

Datenblatt NF-FRA-Serie

Inhalt:

FRA51615

FRA51602

FRA5022

Ab Seite 2

Ab Seite 7


Seite 10

Frequency Response Analyzer

FRA51615

From power electronics such as inverters and to servo control, evaluation of electronic components and even advanced bioresearch.

Significantly improved performance, functionality, and ease of use for many applications.

- Frequency range
- 10 µHz to 15 MHz
- Testing speed
- 0.5 ms/point
- Fundamental accuracy
- Gain ±0.01 dB, Phase ±0.06°
- Isolation / Maximum input voltage
- 600 V CAT II / 300 V CAT III
- Maximum test voltage
- 600 Vrms

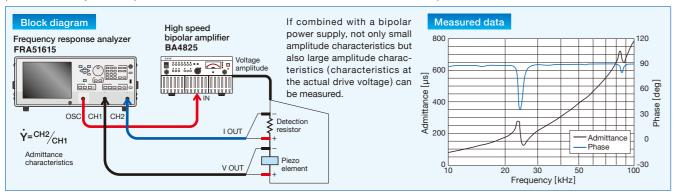
- Sequence measurement
- Marker search function
- Group delay measurement
- Phase control during frequency changes
- Load correction
- Port extension function
- Potential slope elimination

Faster than ever

 Loop Characteristics
 Servo Characteristics
 Transfer Characteristics
 Impedance

 Admittance
 PSRR
 PLL Response Characteristics

 Vibration Transfer Characteristics
 Electrochemical Impedance (EIS)

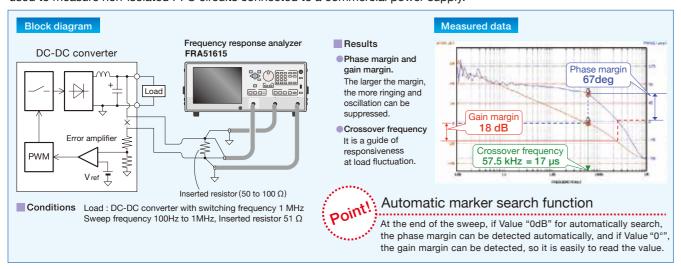

NF FRAs are the best choice, when accuracy of frequency response measurements matters

Applications

Impedance measurement

Measurement of resonance characteristics of piezo element

Unlike the FFT analyzer, the FRA51615 can make the frequency resolution of a specific frequency range finer and has high phase accuracy, so it is possible to know the characteristics near the resonance point in detail.



Characteristics measurement of multilayer ceramic capacitor with applied voltage Internal impedance measurement of battery

Gain-phase measurement

Loop gain measurement of power supply circuit

The loop gain characteristics of the DC-DC converter are measured under actual driving conditions, and the stability of the circuit is quantitatively evaluated from the phase margin and gain margin. With 600 V CAT II / 300 V CAT III, It can also be used to measure non-isolated PFC circuits connected to a commercial power supply.

Wireless charging efficiency measurement Filter input / output characteristics measurement

Vibration analysis

Specifications & Functions

FRA51615

Newly Designed to Support Many Testing Scenarios

Specifications and Functionality to Ensure Reliable and Highly Accurate Measurements

Measurable frequency range 10 µHz to 15 MHz

Supports low frequencies of 10 μ Hz all the way to 15 MHz. Resolution has also been increased to 10 μ Hz. Ultra-low frequencies required for electromechanical impedance testing is also supported.

Fundamental accuracy Gain ±0.01 dB, Phase ±0.06°

Highly accurate measurements are achieved with digital Fourier conversion and self-calibration functionality. *Accuracy varies depending on testing conditions.

Isolation 600 V CAT II / 300 V CAT III

The oscillator output (OSC) and 2 analysis inputs (CH1 and CH2) are isolated from the chassis. Terminals are also isolated from each other. Available isolation ratings include 600 V CAT II and 300 V CAT III.

For the loop and gain testing of power circuits such as high-voltage inverters and PFC circuits, this further expands the range of applications supported by FRAs.

Automatic, high-density sweeps

The FRA51615 supports high-density testing of up to 20,000 points as well as automatic adjustment of frequency density specifically during intervals of sudden changes in measurement data.

Integrator

The data integrator is used to remove the effects of noise while measuring. The period of repeated testing is configured in cycles or time.

Delay function

This function delays the start of testing to reduce error caused by transient responses during frequency changes. A function has also been added to delay the start of testing only for start of sweep testing or spot testing.

Interfaces GPIB, USB, LAN, RS-232, VGA

With these interfaces, automated testing systems can be built. A VGA port is also included on the rear to connect with external monitors. Refer to the description of the right figure of the rear side of the device for more information on other output ports.

Testing speed 0.5 ms/point

Maximum sweep speed of 0.5 ms/point is definitely fast. This device can help reduce production line tact times.

Dynamic range 140 dB

A larger dynamic range has been achieved with a high-resolution A/D converter and auto ranging functionality that optimizes testing ranges per frequency measurement point. Highly accurate measurements can be taken even when changes occur during testing.

Auto range

This feature automatically tracks the input signal level so that the range is constantly optimized during testing. Once noise that exceeds the range is detected, the system automatically sets a larger range. Measurement data will not become saturated within specific ranges. It is also possible to select a fixed range in order to avoid discontinuities in the measurement values associated with range changes.

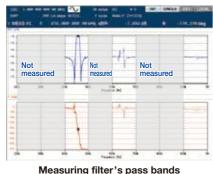
Amplitude compression

To prevent saturation and damage of test devices, oscillator levels are controlled to match the amplitude level of the test device.

Automatic integrator

Integrals are repeated until variation in measurements due to noise lower than a preconfigured value.

Differential and integral operations


This feature calculates differentials, second-order differentials, integrals, and double integrals for the time domain of measurement data. For example, this is useful for calculating displacement, speed, and acceleration from acceleration sensor or laser doppler vibrometers.

Increaseing testing efficiency!

Sequential testing

Sweep measurements can be performed in accordance with a numerical order that is read from configuration memory. The frequency range can be divided up to 20 parts per sweep so that these different frequency ranges can be measured using different amplitude and integral settings. This is useful in accurately measuring specific frequency ranges of filters, piezoelectric elements, and so on. This is also useful in measuring components with a bias dependency, such as multilayer ceramic capacitors (MLCC), inductors, and transformers.

Only required frequency ranges are measured

Measuring MLCC static electricity capacity Measuring the same frequency range at different test conditions

Marker search functionality

In addition to moving to a marker and reading the value, the system can automatically search for points matching configured criteria.

Phase control during frequency changes

Frequencies are changed at the timing at which the phase of the oscillator output signal is at 0 $^{\circ}$. As a result, there are no DC components from the start to the end of the frequency sweeps, which enables the impedance of batteries to be tested without changing the charge/discharge state. And the frequency response of high-pass filters (HPF) can be measured without any DC transient responses.

Error correction

Open/Short/Load Correction, Port Extension Functionality, Potential Gradient Removal, and Equalization

Open correction/short correction

Corrects errors in measurements due to stray admittance of open circuits and residual impedance of shorted circuits. [Impedance testing]

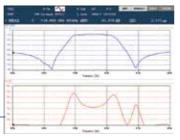
Load correction

Test devices of known values are used as reference impedance to correct related errors. [Impedance testing]

Port extension functionality

Corrects errors due to propagation delays when long cables are used. [Impedance testing]

Potential gradient removal


Amplitude and phase of sine waves and ramp waves are individually detected given that test signals are composed of sine waves and ramp waves (fluctuating potential waveforms). This removes the effects of changes in potential that accompany charging/discharging cycles of batteries. [Impedance testing]

Corrects measurement-related errors by measuring the frequency response of externally connected sensor, cables, and other components involved in measurements beforehand. [Gain/phase testing]

*Correction features used for the types of measurements indicated in [].

Group delay measuring

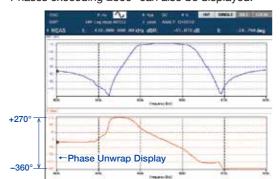
This system can display group delay (GD, phase differentials between input and output by frequency) used to evaluate reproducibility of waveforms of filters and other electronic components.

Graph display

SPLIT display

Both a SINGLE mode that displays one graph per page and a SPLIT mode that displays an upper graph and lower graph are available.

Data trace


A reference data trace (REF) and a measurement data trace (MEAS) can be drawn as overlays.

Phase unwrap display

Displays the phase continuously without using 0°, 180°, and 360° as cross-over points.

Phases exceeding ±360° can also be displayed.

Specifications

▼ Oscillator

Insulated BNC (front panel, OSC)	
10 μHz to 15 MHz Setting resolution : 10 μHz Accuracy : ±10 ppm	
0 to 10 Vpk Setting resolution : 3 digits or 0.01 mVpk, whichever is greater	
-10 V to +10 V, Setting resolution : 10 mV	
50 Ω ±2% (1 kHz)	
Voltage: ±10 V Current: ±100 mA	
Sweep density: 3 to 20,000 steps/sweep Sweep type: Linear or log, selectable Sweep time: Fastest 0.5 ms (per frequency point)	
QUICK : immediately changes to the set voltage or to 0 V	
SLOW: changes to the set voltage or to 0 V gradually over a period of about 10 seconds	
Function for turning off at 0° phase	
Function for changing the frequency at 0° phase It is possible to turn the AC and DC on / off at	
the same time or to turn off the AC only. It is possible to turn on automatically at the start of measurement and to turn off automatically at the end of measurement.	
600 V CAT II or 300 V CAT III (BNC grounded to the enclosure)	
150 pF or less	
Connector: BNC Setting range: -10 V to +10 V Output resistance: 600 Ω ±2%	

Analysis input

Input channels	2 (CH1, CH2)
Connectors	Insulated BNC
Input impedance	1 MΩ ±2%, 20 pF ±5pF
Measurement range	10 ranges (30 m/100 m/300 m/1/3/10/30/ 100/300/600 Vrms), and AUTO. CH1 and CH2 can be set independentry.
Maximum input voltage	600 V CAT II or 300 V CAT III
Maximum measurement voltage	600 Vrms (the bundled signal cable is used)
Over-level detection	0 to 600 Vrms (over lamp lights, buzzer warning sound, stop sweep measurement)
Dynamic range	140 dB (10 Hz to 1 MHz) 80 dB (1 MHz to 15 MHz)
IMRR	lisolation mode rejection ratio 120 dB or more (DC to 60 Hz)
Isolation	600 V CAT II or 300 V CAT III (BNC ground to the enclosure)
Capacitance relative to the enclosure	200 pF or less

Measurement processing

Measurement operations	UP SWEEP [In order of increasing frequency] DOWN SWEEP [In order of decreasing frequency] SPOT [At the current frequency (no sweep)] REPEAT [Repeatedly measurements] SINGLE [A single measurement]
Integration function	This function performs integration on measurement data to remove the effects of noise. 0 to 9,990 s or 1 to 9,999 cycles
Measurement delay function	This function delays the beginning of a measurement after the frequency is changed. 0 to 9,990 s or 0 to 9,999 cycles

Start delay unction	This function delays the beginning of a measurement only from the start of a sweep or spot measurement. 0 to 9,990 s or 0 to 9,999 cycles
Automatic ntegration unction	This function repeats the integration process until the variation in the measurement values falls below a set value. Setting: FIX, SHORT, MED, or LONG.
Amplitude compression	This function automatically adjusts the oscillator output amplitude so that the amplitude of the signal input to the reference channel satisfies the target amplitude. Target amplitude setting: 1 μ V to 600 Vrms Voltage limit for the oscillator: 1 mV to 10 Vpk Allowable error: 1 to 100% Maximum number of retries: 1 to 9,999 Correction factor: 1 to 100%
Automatic nigh density sweep	This function automatically increases the sweep density in the region just before and after a point where there is a large change in the measurement data. Variation: a, b, R (0 to 600 Vrms) dBR (0 to 1000 dB) Phase (0 to 180°)
Sequence neasurement unction	This function performs measurements according to the content of a measurement condition memory. UP SWEEP The first up sweep is performed over the frequency range that is set in memory number 1. The next up sweep is performed over the range that is set in memory number 2, and so on continuously up to the upper limit memory number. DOWN SWEEP The first down sweep is performed over the range set in the memory number specified by the upper limit memory number. The next down sweep is performed over the range that is set in the next lower memory number and so on continuously down to memory number 1. Upper limit memory number: 1 to 20
Analysis proces	aging

Frequency Response Analyzer FRA51615

Analysis processin	g
Display unit	Gain (ratio, unitless number) or impedance
Measurement accurac	у
Fixed range	
Measurement accurac	cy = Relative accuracy + Calibration accuracy
Relative accuracy = ± (Basic accuracy + [Dynamic accuracy + Inter-range accuracy × N)

Basic accuracy Upper: gain (ratio); Middle: impedance Z; Lower: phase

or the accuracy of the calibration standard equipment.

Calibration accuracy: The accuracy of external equipment that is

connected to the instrument, such as a shunt resistor or probe,

Measurement		Frequ	uency	
range (rms)	≤ 100 kHz	≤ 200 kHz	≤ 1 MHz	≤ 2 MHz
	±0.2 dB			
600 V	±2.4%			_
	±1.2°			
	±0.1	l dB		
300 V	±1.	2%		
	±0	.6°		
	±0.0	5 dB		
100 V	±0.5	58%		_
	±0.3°			
30 V	±0.01 dB		±0.025 dB	±0.1 dB
to	±0.1	12%	±0.29%	±1.2%
30 mV	±0.	06°	±0.15°	±0.6°

▼ Analysis processing (continued)

Measurement	Frequency	
range (rms)	≤ 5 MHz	≤ 15 MHz
10 V	±0.2 dB	±0.5 dB
to	±2.4%	±5.9%
30 mV	±1.2°	±3.0°

[Conditions]

- At least 30 cycles of integration
- Fixed measurement range and the same range for both channels.
- The gain, Z and phase error for when the signal input is at the full scale of the measurement range for both channels.
- *For the cells that contain only "——", either the measurement is not possible or there is no accuracy specification for it.

Dynamic accuracy (excerpt): Gain (ratio) / Impedance Z / Phase

- \leq 100 kHz and 300 mV to 600 V ranges : ±0.1 dB / $\pm1.2\%$ / $\pm0.6^{\circ}$ \leq 15 MHz and 100 mV to 10 V ranges : ±0.5 dB / $\pm6.0\%$ / $\pm3.0^{\circ}$ [Conditions]
- At least 30 cycles of integration
- Fixed measurement range and the same range for both channels.
- Gain, Z and phase variation for when the signal level changes from full-scale of measurement range to 1/10. The input signal level is 1:1 or 1:0.1 between channels

Inter-range accuracy (excerpt): Gain (ratio) / Impedance Z / Phase

- \leq 100 kHz and \leq 300 V range : \pm 0.05 dB / \pm 0.58% / \pm 0.3°
- ≤ 15 MHz and≤ 10 V range : ±0.05 dB / ±0.58% / ±0.3°
- \leq 100 kHz and 600 V range : \pm 0.1 dB / \pm 1.2% / \pm 0.6° [Conditions]
- At least 30 cycles of integration
- Fixed measurement range for both channels
- The gain, Z and phase error for when the measurement range difference between channels is 1, the input signal levels of both channels are equal, and equal to the range full scale level of the smaller range.

Auto-range

Measurement accuracy = Relative accuracy + Calibration accuracy
Relative accuracy = ± (|Basic accuracy|+|Dynamic accuracy|)

Calibration accuracy: The accuracy of external equipment that is connected to the instrument, such as a shunt resistor or probe, or the accuracy of the calibration standard equipment.

Basic accuracy Upper: gain (ratio); Middle: impedance Z; Lower: phase

Signal level	Frequency			Frequency	
(rms)	≤ 100 kHz	≤ 200 kHz	≤ 1 MHz	≤ 2 MHz	
	±0.02 dB	±0.02 dB	±0.05 dB	±0.1 dB	
7 V	±0.24%	±0.24%	±0.58%	±1.2%	
	±0.12°	±0.12°	±0.3°	±0.6°	

Signal level	Frequency		Frequency	
(rms)	≤ 5 MHz	≤ 15 MHz		
	±0.2 dB	±0.5 dB		
7 V	±2.4%	±5.9%		
	±1.2°	±3.0°		

[Conditions]

- At least 30 cycles of integration
- Auto-range for both channels
- The gain, Z and phase error for when the input signal level is the same for both channels.

Dynamic accuracy (excerpt): Gain (ratio) / Impedance Z / Phase

- \leq 100 kHz and signal level of 30 Vrms to 600 Vrms :
- $\pm 0.1 \; dB \, / \, \pm 1.2\% \, / \, \pm 0.6^{\circ}$
- \leq 15 MHz and signal level of 100 mVrms to 20 Vrms : ± 0.5 dB / $\pm 6.0\%$ / $\pm 3.0^{\circ}$

[Conditions]

- At least 30 cycles of integration
- Auto-range for both channels
- The gain, Z and phase variation for when input signal level with the greater signal level channel changes from 7 Vrms to the value above, when the input signal level between channel is 1:1 or 1:0.1.

Er	ror cc	rrec	tior
fur	nctior	ı	

Corrects for measurement errors that arise within the instrument itself (Calibration).

▼ Gain

Analysis modes	Ratio : CH1/CH2, CH2/CH1 Amplitude : CH1, CH2
Graph types	Bode plot, Nyquist plot, Nichols plot
Measurement items	dBR (gain dB), θ (phase), GD (group delay), R (absolute gain/amplitude), a (real part of gain/real part of amplitude), b (imaginary part of gain/imaginary part of amplitude)
Error correction function (Equalizing)	Measuring the frequency characteristics of the measurement system (sensors, cables, etc.) in advance and then eliminate that error component.

Impedance

▼ Impedance	
Voltage and current input	Voltage is measured as the measurement amplitude at CH1 and current is measured as the measurement amplitude at CH2.
Analysis modes	Impedance : CH1/CH2 Admittance : CH2/CH1 Voltage : CH1 Current : CH2
Graph types	Bode plot, Nyquist plot, Cole-cole plot
Measurement items	Z (impedance) R, X (resistance, reactance) Y (admittance) G, B (conductance, susceptance) Ls, Lp (inductance) Cs, Cp (capacitance) Rs, Rp (resistance) V (voltage) I (current) θ (phase) D (dissipation factor) Q (quality factor)
Error correction function	Open correction Short correction Load correction Load standard value: Standard values can be entered for up to 10 frequency points. Port extension: Corrects the error due to phase delay in cables for 2-port measurements. Slope compensation This function performs analysis that is unaffected by the DC level for signals that have a superimposed DC level that varies linearly over time.

▼ Display

Display unit	8.4-inch color TFT-LCD (SVGA) with touch screen
Graph display styles	SINGLE: One graph is displayed on the screen. SPLIT: Two graphs are displayed on the screen, one above the other.
Data traces	Reference data trace (REF) Measurement data trace (MEAS)
Auto scaling	This function automatically optimizes the graph display scale.(on or off)
Marker display	Main marker, Delta marker
Marker search function	Search items Max, Min: The maximum and minimum values Peak, Bottom: The peak (maximal) and the bottom (minimal) values NextPeak: The next peak NextBottom: The next bottom Value: The marker value ΔValue: The difference between the delta marker and the main marker values X Value: Frequency *It is possible to automatically perform a search at the end of a sweep measurement.

▼ Memory

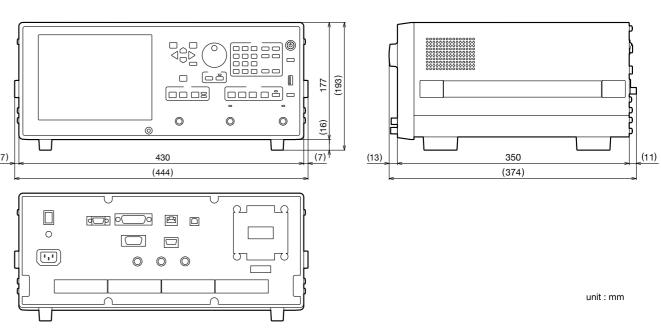
· ········	
Measurement data (MEAS)	The data from the sweep measurement Up to 20 sets of data can be stored in internal memory.
Reference data (REF)	Data that can be displayed on a graph together with the measurement data (MEAS). This can be measurement data or data loaded from a USB memory device. (on/off)
Error correction data	Open correction, Short correction, Load correction, Equalize
Measurement conditions	20 sets
Data retention	Except for data that is not stored in internal memory yet, measurement data is retained, even if the power is turned off.

External memory

	•
Media	USB memory device
Connections	Front panel, USB-A
File system	FAT
Screen capture function	MS Windows bitmap file (extension : .BMP, image size: 800 × 600)
TUTICLIOTT	(extensionbivir, image size. 600 x 600)

External input/output function

External input/output function		
Interface	GPIB: Standards conformance; IEEE488.1 and IEEE488.2 USB: USB 2.0 HighSpeed LAN: 10/100Base-T	
External monitor	RS-232 : Baud rate 4800 to 230400 bps Connector : VGA (mini D-sub15 pin, female) Signal : 800 × 600 pixels (SVGA), analog RGB component video signal	


Reference clock input	Frequency: 10 MHz ±100 ppm or under Input waveform: Sinusoidal or square Input voltage: 0.5 Vp-p to 5 Vp-p
Reference clock output	Output impedance : $50~\Omega$ (nominal), AC coupling Frequency : $10~\text{MHz}\ \pm 10~\text{ppm}$ (when operating on the internal reference clock) Output waveform : $1~\text{Vp-p}~/~50~\Omega$, square waveform
DC power output	Power supply outlet that is used by the "5055 SIGNAL INJECTOR PROPE" (option) Connector: Rear panel, AUX Output voltage: Approximately ±24 V

Miscellaneous specifications

Power input	Voltage : AC 100 V to 230 V ±10%, 250 V or less Frequency : 50 Hz/60 Hz ±2 Hz
Power consumption	100 VA or less
Range of ambient temperature and humidity	+5 °C to +40°C, 5 to 85% RH (absolute humidity 1 to 25 g/m³, no condensation)
Dimensions	430 mm (W) × 177 mm (H) × 350 mm (D) (excluding protruding parts)
Weight	Approximately 8.5 kg
Accessories	Instruction Manual (operation and remote control) Power Cord Set (2 m, with three-pin plug) Signal Cables (BNC-BNC, 50 Ω , 1 m, 600 V CAT II) ×3 Calibration Cables (BNC-BNC, 50 Ω , 20 cm) ×2 BNC Adapter (600 V CAT II)

6

Options

MODEL	NAME	NOTE
5055	SIGNAL INJECTOR PROBE	Limit to ±11 V
PA-001-0368	IMPEDANCE MEASUREMENT ADAPTER*1	
PA-001-0369	LOOP GAIN MEASUREMENT ADAPTER*1	
PA-001-1840	HI-POWER IMPEDANCE MEASUREMENT ADAPTER (1 Ω)*2	
PA-001-1841	HI-POWER IMPEDANCE MEASUREMENT ADAPTER (100 Ω)*2	
PA-001-1838	TEST FIXTURE ADAPTER (1 Ω)*1	
PA-001-1839	TEST FIXTURE ADAPTER (100 Ω)*1	
PA-001-0370	SHUNT RESISTOR*2	
PA-001-0419	HIGH WITHSTAND VOLTAGE CLIP CABLE SET (3 PER SET)	
PA-001-0420	HIGH WITHSTAND VOLTAGE ALLIGATOR CLIP CABLE SET (SMALL) (3 PER SET)	300 V CAT II or less
PA-001-0421	HIGH WITHSTAND VOLTAGE ALLIGATOR CLIP CABLE SET (LARGE) (3 PER SET)	
PA-001-0422	ALLIGATOR CLIP CABLE SET (3 PER SET)*1	
PA-001-3058	HIGH WITHSTAND VOLTAGE BNC EXTENSION CABLE SET (15 cm, 3 CABLES)	
PC-007-0364	HIGH WITHSTAND VOLTAGE EXTENSION BNC CABLE (1 m)	
PA-001-3059	HIGH WITHSTAND VOLTAGE BNC CABLE SET (20 cm, 2 CABLES)	For maintenance
PC-001-4503	HIGH WITHSTAND VOLTAGE BNC ADAPTER (T-BRANCH)	For maintenance
PC-002-3347	HIGH WITHSTAND VOLTAGE BNC CABLE	For maintenance
PC-007-1490	IMPEDANCE MEASUREMENT ADAPTER KELVIN CLIP	For maintenance
PC-007-1922	LOOP GAIN MEASUREMENT CLIP	For maintenance
PA-001-3036	RACK MOUNT KIT (EIA)	
PA-001-3037	RACK MOUNT KIT (JIS)	

- *1 Safe operation of the instrument requires that the potential difference from the grounding potential is restricted to 42 Vpk or less.
- *2 No MEASUREMENT CATEGORY, Circuits not intended to be directly connected to the mains

Peripheral equipment

5055 SIGNAL INJECTOR PROBE

An auxiliary unit to measure the loop response of a servo system or the like with closed loops.

Combine with a bipolar amplifier to measure impedance at the actual operating voltage.

• Built-in shunt resistor : 1 $\Omega/100~\Omega$

PA-001-0368 IMPEDANCE MEASUREMENT ADAPTER

An adapter to measure the impedance. The shunt resistors for current detection $(1 \Omega, 10 \Omega, 100 \Omega)$ are built-in.

PA-001-1838 (1 Ω)/ PA-001-1839 (100 Ω) TEST FIXTURE ADAPTER

Can be connected to test fixtures for LCR meters

• Built-in shunt resistor : 1 Ω / 100 Ω

PA-001-0369

LOOP GAIN MEASUREMENT ADAPTER

An adapter to measure the loop gain of a negative feedback circuit in operation.

PA-001-0370 SHUNT RESISTOR

A shunt resistor incorporating a 1 Ω 4-terminal resistor, used to detect a current (1 Arms maximum) flowing through a DUT.

Note: The contents of this catalog are current as of June 18th, 2019

- Products appearance and specifications are subject to change without notice.
- •Before purchase contact us to confirm the latest specifications, price and delivery date.

GAIN-PHASE ANALYZER

FRA51602

Loop-Gain Measurement for Inverters and Switching Power Supplies

Maximum Voltage

600 V

Non-insulated PFC Circuits connected to commercial power supply can be measured.

Measurement of Transmission Efficiency on Wireless Charging

Measurement of Mechanical Servo Characteristic

Measurement of Frequency Response of Filters and Amplifiers

Acoustic Analysis

Vibration Analysis

Measurement Frequency 10 µHz to 2 MHz Measuring

Measurement Speed 0.5 ms/point

Basic Accuracy Gain: ±0.01 dB

Phase : ±0.06°

600 Vrms Maximum Measurement Voltage

Maximum Input Voltage 600 V CAT II /300 V CAT III Isolation 600 V CAT II /300 V CAT III

140 dB **Dynamic Range**

Auto Ranging Automatic High Density Sweep

Delay Function Group Delay

Amplitude Compression Function

Sequence Measurement Function

Marker Search Function

Measurement Function for Changing the Frequency at 0°-phase

For Evaluating Circuit and Servo System

Maximum Voltage 600V
High Accuracy (Gain, Phase)
Wide Dynamic Range
Input/output Isolation...

Specifications and Functionality to Ensure Reliable and Highly Accurate Measurements

Measurement freauency 10 µHz to 2 MHz

Supports low frequencies of 10 μ Hz all the way to 15 MHz. Resolution has also been increased to 10 μ Hz.

Basic accuracy Gain ±0.01 dB, Phase ±0.06°

Highly accurate measurements are achieved with digital Fourier conversion and self-calibration functionality.

*Accuracy varies depending on testing conditions.

Isolation 600 V CAT II / 300 V CAT III

The oscillator output (OSC) and 2 analysis inputs (CH1 and CH2) are isolated from the chassis. Terminals are also isolated from each other. Available isolation ratings include 600 V CAT II and 300 V CAT III. In addition to the loop and gain testing of power circuits such as high-voltage inverters and PFC circuits, this further expands the range of applications supported by FRAs.

Automatic high density sweep :

Automatic adjustment of frequency density specifically during intervals of sudden changes in measurement.

■ Amplitude compression :

To prevent saturation and damage of test devices, oscillator levels are controlled to match the level of the test device.

■ Delay function :

Delays the start of testing to reduce error caused by transient responses during frequency changes.

Measurement speed 0.5 ms/point

Maximum sweep speed of 0.5 ms/point is definitely fast. This device can help reduce the production line tact times. Significantly faster than conventional models.

Dynamic range 140 dB

A larger dynamic range has been achieved with a high-resolution A/D converter and auto ranging functionality that optimizes testing ranges per frequency measurement point.

Auto range

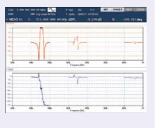
This feature automatically tracks the input signal level so that the range is constantly optimized during testing. Once noise that exceeds the range is detected, the system automatically sets a larger range. Measurement data will not become saturated within specific ranges. Due to resolve the problem of non-continuous measurement values as a result of range changes, a fixed range can also be selected.

■ Integration function :

To remove the effects of noise during measuring.

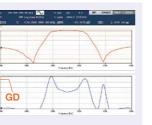
■ Auto integration function :

Integrals are repeated until variation in measurements due to noise falls below a preconfigured value.

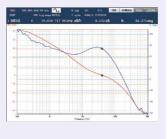

Equalize function :

Corrects measurement-related errors by measuring the frequency response of externally connected sensor, cables, and other beforehand.

Increasing testing efficiency!


Sequential testing

Sweep measurements can be performed in accordance with a numerical order that is read from configuration memory. The frequency range can be divided up to 20 parts per sweep so that these different frequency ranges can be measured using different amplitude and integral settings.


Group delay meaurement

This system can display group delay (GD, phase differentials between input and output by frequency) used to evaluate reproducibility of waveforms of filters and other electronic components.

Marker Search Function Automatic search available

In addition to moving to a marker and reading the value, the system can automatically search for points matching configured criteria. For example, it is possible to detect "phase margin" and "gain margin" by searching 0 dB and 0°at the end of sweep

Phase Control during Frequency Changes

Frequencies are changed at the timing at which the phase of the oscillator signal is at 0° . The frequency response of high-pass filters (HPF) can be measured without any DC transient responses.

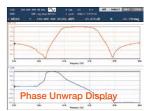
Differentiation and Integration Function

This feature calculates differentials, second-order differentials, integrals, and double integrals for the time domain of measurement data. For example, this is useful for calculating displacement, speed, and acceleration from acceleration sensor or laser doppler virometers.

A Variety of Graph Displays

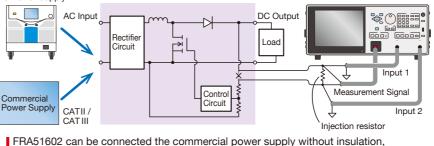
Split Display

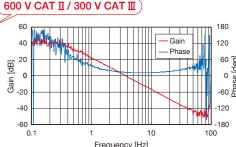
Both SINGLE mode that displays one graph per page and a SPLIT mode that displays an upper graph and lower graph are available.


Data Trace

A reference data trace (REF) and a measurement data trace (MEAS) can be drawn as overlays.

Phase Unwrap Display


Displays the phase continuously without using 0°, 180°, and 360° as cross-over points. Phases exceeding ±360° can also be displayed.



Various Evalutions Under Actual Driving Conditions for Devices!

Loop Gain Measurement of Non-insulated PFC Circuit AC Power Supply AC Input AC Input AC Input AC Input AC Input AC Input DC Output DC

Input 2 -40 -60 0.1

so it is possible to evaluate the equipment with the use of the commercial power supply.

SPECIFICATIONS

Oscillator Section

Frequency	10 μHz to 2 MHz, Setting resolution : 10 μHz Accuracy : ±10 ppm (operating on the internal reference clock)
AC Signal Amplitude	0 to 10 Vpk Setting resolution of 3 digits or 0.01 mVpk, whichever is greater
DC Bias	-10 V to 10 V, Setting resolution : 10 mV
Output Impedance	50 Ω ±2% (1 kHz)
Maximum Output (AC + DC)	Voltage: ±10 V Current: ±100 mA
Sweep	Sweep density: 3 to 20,000 steps/sweep Sweep type: Linear or log, selectable Sweep time: Fastest 0.5 ms (per frequency point)
Output Control	QUICK: Immediately changes to the set voltage or to 0 V SLOW: Changes to the set voltage or to 0 V gradually over a period of about 10 seconds Function for turning off and changing the frequency at 0° phase Possible to turn the AC and DC on / off at the same time or to turn off the AC independently Possible to turn on automatically at the start of measurement and to turn off automatically at the end of measurement
Connector	Insulated BNC (front panel, OSC)
Isolation	600 V CAT II / 300 V CAT III (BNC grounded to the enclosure)
DC BIAS OUT (rear panel)	When the DC BIAS OUT is set as the output connector for the DC bias. Connector : BNC Setting Range : -10 V to 10 V Output resistance : $600 \Omega \pm 2\%$

Analysis Input Section

Analysis input Section	
Input Channels	2 (CH1, CH2)
Input Connector	Insulated BNC
Input Impedance	1 MΩ ±2%, 20 pF ±5 pF
Measurement Range	10 ranges (30 m/100 m/300 m/1/3/10/30/100/300/600 Vrms) or Auto range (setting CH1 and CH2 independently)
Maximum Input Voltage	600 V CAT II / 300 V CAT III
Maximum Measurement Voltage	600 Vrms (when using bundled signal cables)
Dynamic Range	140 dB (10 Hz to 1 MHz), 80 dB (1 MHz to 2 MHz)
IMRR	120 dB or more (DC to 60 Hz)
Isolation	600 V CAT II / 300 V CAT III (BNC grounded to the enclosure)

■ Measurement Processing Section

Measurement Operations	UP SWEEP (In order of increasing frequency), DOWN SWEEP (In order of decreasing frequency), SPOT (At the current frequency, no sweep), REPEAT (Repeatedly measurement), SINGLE (A single measurement)	
Integration Function	Integration on measurement data to remove the effects of noise	
Delay Function	Delays the beginning of a measurement after the frequency is changed.	
Start Delay Function	Delays the beginning of a measurement only from the start of a sweep or spot measurement	
Automatic Integration	Repeats the integration process until the variation in the measurement values falls below a set value	
Amplitude Compression	Controls the level of oscillation so that the amplitude level of DUT may stay at a certain value.	
Automatic High Density Sweep	When measured data changes greatly, sweep density is made higher around the frequency area automatically.	
Sequence Measurement	Measurements according to the content of a condition memory	

GAIN-PHASE ANALYZER FRA51602

Analysis Processing Section

Analysis Frocessing Section
Measurement Accuracy
Fixed Range
Measurement accuracy = Relative accuracy + Calibration accuracy Relative accuracy = ±(Basic accuracy + Dynamic accuracy + Inter-range accuracy × N) Calibration accuracy: Accuracy of external equipment that is connected to the instrument, such as a shunt resistor or probe, or the accuracy of the calibration standard equipment
Basic accuracy (excerpt): Gain (ratio) / Phase ≤200 kHz and 30 mV to 30 V ranges: ±0.01 dB / ±0.06° ≤100 kHz and 600 V ranges: ±0.2 dB / ±1.2° ≤2 MHz and 30 mV to 30 V ranges: ±0.1 dB / ±0.6° [Conditions]

At least 30 cycles of integration

Fixed and the same measurement range for both channels. The gain and phase error for when the signal input is at the full scale of the

measurement range for both channels

Dynamic accuracy (excerpt): Gain (ratio) / Phase \leq 100 kHz and 300 mV to 600 V ranges : \pm 0.1 dB / \pm 0.6° \leq 2 MHz and 100 mV to 10 V ranges : \pm 0.2 dB / \pm 1.2° [Conditions]

- At least 30 cycles of integration

Fixed and the same measurement range for both channels.

Gain and phase variation for when the signal level changes from full-scale of measurement range to 1/10. The input signal level is 1:1 or 1:0.1 between channels.

Inter-range accuracy (excerpt): Gain (ratio) / Phase ≤100 kHz and ≤300 V range : ±0.05 dB / ±0.3° ≤2 MHz and ≤30 V range: $\pm 0.05 \text{ dB} / \pm 0.3^{\circ}$

[Conditions]

At least 30 cycles of integration

Fixed measurement range for both channels

The gain and phase error for when the measurement range difference between channels is 1, the input signal levels of both channels are equal, and equal to the range full scale level of the smaller range.

Auto Range

Measurement accuracy = Relative accuracy + Calibration accuracy Relative accuracy = ±(|Basic accuracy| + |Dynamic accuracy|) Calibration accuracy:

The accuracy of external equipment that is connected to the instrument, such as a shunt resistor or probe, or the accuracy of the calibration standard equipment.

Gain (ratio) / Phase Basic accuracy (excerpt): ≤200 kHz and signal level of 7 Vrms : ±0.02 dB / ±0.12° ≤2 MHz and signal level of 7 Vrms: $\pm 0.1 \text{ dB} / \pm 0.6^{\circ}$ [Conditions]

At least 30 cycles of integration

Auto-range for both channels

The gain and phase error for when the input signal level is the same for both channels.

Dynamic accuracy (excerpt): Gain (ratio) / Phase \leq 100 kHz and signal level of 30 Vrms to 600 Vrms : \pm 0.1 dB / \pm 0.6° \leq 2M Hz and signal level of 100 mVrms to 30 Vrms : \pm 0.2 dB / \pm 1.2° [Conditions]

At least 30 cycles of integration

Auto-range for both channels

The gain and phase variation for when input signal level with the greater signal level channel changes from 7 Vrms to the value of the table, when the input signal level between channel is 1:1 or 1:0.1.

Error Correction Function	Corrects for measurement errors that arise within the instrument itself (Calibration)	
Analysis Modes	Ratio: CH1/CH2, CH2/CH1 Amplitude: CH1, CH2	
Graph Types	Bode plot, Nyquist plot, Nichols plot	
Measurement Items	dBR (gain dB), θ (phase), GD (group delay) R (absolute gain/amplitude) a (real part of gain/real part of amplitude) b (imaginary part of gain/imaginary part of amplitude)	
Error Correction Function (Equalizing)	This function obtains the characteristics for DUT alone by measuring the frequency characteristics of the measurement system (sensors, cables, etc.) in advance and then eliminate that error components.	

■ Display Section

Display Unit	8.4-inch color TFT-LCD (SVGA) with touch screen
Graph Display Styles	SINGLE or SPLIT (Two graphs are displayed on the screen, one above the other.)
Data Traces	Reference data trace (REF) or measurement data trace (MEAS)
Auto Scaling	On or Off (automatically optimizes the graph display scale)
Marker Search Function	Search items: Max, Min, Peak, Bottom, Next Peak, Next Bottom, Value, ΔValue, X Value Possible to automatically perform a search at the end of a sweep measurement.

Others

Memory	Measurement data (MEAS): Up to 20 sets Reference data (REF): Displayed on a graph together with the measurement data (on/off) Error correction data, Measurement conditions: Up to 20 sets
External Memory	USB memory (Front panel, USB-A connector) File system : FAT, Screen capture : BMP
Interface	GPIB (IEEE488.1, IEEE488.2), USB (USBTMC), LAN (10/100 Base-T), RS-232 (4800 to 230400 bps)
External Monitor	VGA (Rear panel)
Reference Clock	Input : Within 10 MHz ± 100 ppm, 0.5 Vp-p to 5 Vp-p Output : Within 10 MHz ± 10 ppm, 1 Vp-p / 50 Ω
DC Power Output	For Signal Injector Probe 5055 (option), ±24 V
Power Requirements	AC100 V to 230 V±10% (250V or less), 50 Hz/60 Hz ±2 Hz
Power Consumption	100 VA or less
Ambient Temperature and Humidity	+5°C to +40°C, 5 to 85%RH (absolute humidity 1 to 25 g/m³, no condensation)
Dimensions (mm)	430 (W) × 177 (H) × 350 (D) (excluding protruding parts)
Weight	Approx. 8.5 kg
Safety Standards and EMC	EN 61010-1, EN 61010-2-030 EN 61326-1 (Group 1, Class A), EN 61326-2-1
RoHS	Directive 2011/65/EU

Accessories

- Instruction Manual (operation and remote control)
- Power Cord Set (2 m, with three-pin plug)
- Signal Cables (BNC-BNC, 50 Ω, 1 m, 600 V CAT II) ×3
- Calibration Cables (BNC-BNC, 50 Ω, 20 cm) ×2
- BNC Adapter (600 V CAT II)

Options (sold seperately)

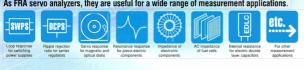
	· · · · ·
5055	Signal Injector Probe
PA-001-0369	Loop Gain Measurement Adapter
PA-001-0419	High Withstand Voltage Clip Cable Set*
PA-001-0420	High Withstand Voltage Alligator Clip Cable Set (small)*
PA-001-0421	High Withstand Voltage Alligator Clip Cable Set (large)*
PA-001-3058	High Withstand Voltage BNC Extension cable set (15 cm)*
PC-007-0364	High Withstand Voltage BNC Extension cable (1m)
PA-001-3036	Rack Mount Kit (EIA)
PA-001-3037	Rack Mount Kit (JIS) * 3 per set

Rear Panel

*For Signal Injector Probe (sold seperately)

Before purchase contact us to confirm the latest specifications, price and delivery date.

Note: The contents of this catalog are current as of Jun 12th, 2019


Products appearance and specificaitons are subject to change without notice.

FREQUENCY RESPONSE ANALYZER FRA5022

Measures frequency responses with high accuracy. Function and performance further improved.

As FRA servo analyzers, they are useful for a wide range of measurement applications.

■ Oscillator section

0	
Output waveform	Sine wave
Frequency range	Setting range: 0.1 mHz to 100 kHz
	Setting resolution: 5 digits or 0.01 mHz, whichever greater
AC amplitude	Setting range: 0 to 10 Vpk or 0 to 7.07 Vrms
	Setting resolution:
	0.01 Vpk (amplitude ≥ 1 Vpk), 0.001 Vpk (amplitude < 1 Vpk)
	or 0.01 Vrms (amplitude ≥ 1 Vrms), 0.001 Vrms (amplitude < 1 Vrms)
DC bias	Setting range: 10 V to +10 V
	Setting resolution: 0.01 V
Maximum output	Voltage: ±10 V (no load)
(AC + DC)	Current: ±100 mA
Output impedance	50Ω , unbalanced
Output control	Both AC and DC on, both AC and DC off, only AC off,
	SLOW control that gradually changes AC and DC
Isolation	Withstand voltage: 42 Vpk or 30 Vrms
	Electrostatic capacitance against casing: 250 pF or less

■ Analysis input section

Number of input channels	2
Input impedance	1 M Ω , 60 pF in parallel
Frequency range	0.1 mHz to 100 kHz
Maximum input voltage	Measurement range: ±10 V
Over-detection level	Setting range: 0.01 to 19.99 Vrms
Measurement range	Automatic switching (autoranging)
IMRR	120 dB or more
Dynamic range	120 dB or more
Isolation	Withstand voltage: 42 Vpk or 30 Vrms
	Electrostatic capacitance against casing: 300 pF or less

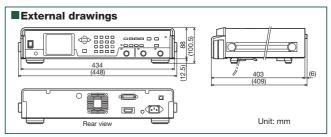
■ Analysis processing section

CH2/CH1, CH2/OSC
Cycle setting range: 1 to 999
Time setting range: 0.01 to 999.99 s
0.1 Hz to 20 kHz: Gain ±0.05 dB (±0.5%), phase ±0.3°
Outside the range above: Gain ±0.15 dB (±15%), phase ±1°
(Input signal levels of both channels: 10 mVrms or higher)

■ Measurement processing section

Measuring operation	Sweep measurement/graph display
	Spot measurement/numeric display
	Scan measurement (Up to ten spots are measured in sequence.)
Sweep control	Frequency axes: Linear/logarithmic
	Sweep operations: Up, down, hold, stop
	Delay time setting range: 0.00 to 999.99 s

■ Display section (3.5-inch color TFT-LCD)


,
Bode plots (gain dB, phase vs. frequency split display)
Orthogonal coordinate display: Numeric display of the value of a + jb
Numeric display of frequency, gain, phase, and amplitude
GO/NO-GO judgment based on the range specification of gain and phase
Gain: ±199.99 dB when dB
0, ±(1.0000E - 9 to 9.9999E + 9) when linear
Phase: Any 360° in ±360.00°
a, b: 0, ±(1.0000E - 9 to 9.9999E + 9)
Amplitude: 0.000 mVrms to 19.99 Vrms
Memory units: 2
Memory capacity: up to 1,000 points (per memory unit)
A, B, A & B (overlapping), A/B (vector ratio)

Other

Setting memory	10
Interface	GPIB, USB: USBTMC
DC power supply output	Connector for 5055 (sold separately), ±24 V
Memory backup	The settings immediately before power-off and measured data are retained.
Power supply	AC 100 V to AC 230 V ±10% (AC 250 V or lower) 50 Hz/60 Hz ±2 Hz
Power consumption	55 VA max.
Overvoltage category	п
Temperature and	+5 to +35°C, 5 to 85% relative humidity
humidity for guarantee	(Absolute humidity of 1 to 25 g/m³ with no condensation)
Dimensions	434(W)×88(H)×403(D) (not including projections)
Weight	About 6.8 kg
Accessories	1 instruction manual, 1 power supply cable, 1 CD-ROM
	(data display software, LabVIEW driver, sample program)

■ Data display software (included as standard)

Data capture	Measured data loaded from FRA to PC
Data save	Measured data stored in CSV format
Graph display	Bode, Nyquist, Nicols, and Cole-Cole plots
Parameter setting	Main FRA parameters are set and controlled.

*A rack mount bracket kit is available.

*The contents of this catalog are current as of April 9, 2007.

•External view and specifications are subject to change without prior notice.

- Please check the latest specifications, prices, and lead time for purchase.
 The company names and product names described here are trademarks or registered trademarks of respective owners.

COSINUS Messtechnik - Ihr Partner für Messlösungen in allen elektrischen und physikalischen Anwendungen

COSINUS Messtechnik GmbH

Rotwandweg 4 82024 Taufkirchen

Tel.: 089 / 66 55 94 - 0

Fax: 089 / 66 55 94 -30

office@cosinus.de www.cosinus.de