w/yE FACTORY MULTIFUNCTION GENERATOR WF1973/WF1974

Effortless waveform generation via an intuitive graphical user interface

Upcoming general-purpose
1GH/30 MHz signal source that is a must for engineers

Types of Output Waveforms Equipped with standard,
arbitrary and arameter-variable" "parameter-varns
waveforms

Generate the waveforms you need-effortlessly!

Wide array of functions for a broad range of applications
While the WF1973 and WF1974 can generate standard waveforms such as sine and square waves, application-specific waveforms such as Gaussian pulse and chattering, and arbitrary waveforms, these
generators also have a wide array of functions, including sequence generutars also have a wide array of functions, including sequence,
modulation, and sweep. These are up-and-coming general-purpose signal sources that are a must for engineers and should be kept on hand for a wide variety of applications.

Anytime, Anywhere

Handy signal source generates basic functions quickly and reliably The WF1973 and WF1974 are easy to use as general-purpose signal
sources for routine tests. Both standard waveforms and various modifysources for routine tests. Both standard waveforms and various modifying functions, including sweep, modulation, burst and duty variable, can
be operated intuitively. Use of direct digital synthesis (DDS) ensures be operated intuitively. Use of direct digital synthesis (DDS) ens
superior stability and repeatability, and so supports reliable testing.

7
30MHZ MULTIFUNCTION GENERATOR

w/VE FACTORY

MULTIFUNCTION

 GENERATORWF1973 ${ }^{[1 \mathrm{CH}]}$ WF1974 ${ }^{[2 \mathrm{CHH}]}$
$0.01 \mu \mathrm{~Hz}$ to 30 MHz (ϵ

Three methods allow you to generate or program Any Waveform!

Fully equipped with the functions and performance that WF1974 are simple to operate and provide high-precision
Multifunctional
A

Burst/trigger/gate
 In the burst oscillation
at any wave count.
and
FF1973 and WF1974 support four modes;
Auto burst: No trigger is needed
Auto burst: No trigger is needed
Trigger burst: Oscillation in sync with the trigger
Gate: Oscillation in sync with the gate signal
Triggered gate: Gate oscillation switched on/off by gate upon trigger The phase where oscillation starts/stops and the level at which

With great speed and operability, the WF1973 and WF1974 With great speed and operability, the WF1973 and WF1974
show excellent performance whiten used as a pulse generator or
signal source for digital circcits. The dutylttime, rising time, and show excellent performance when used as a pulse generato or
signal source for digitial circoits. The edutytime, rising time, and
falling time of pulse waves can be individually set, so these falling time of pulse waves can be individually set, so these
generators are best suited to operation testing of a wide variety generators are best suited to ooperation testing of a wide variety
of digitial equipment and devices, data transmission equipment,
and more.

2 Channels ||| Ideal 2-channel generator
 be performed in one-way or shuttle, linear or logarithmic slope be performed in one-way or shuttle, linear or logarithmic slope*,
and continuous, single-shot or gated single-shot modes. Marker and X-drive outputs are avaialabe. DC offset modulation and
PWM modes are supported as well as FM. FSK, PM, PSK, and PWM modes are supported as well as FM, FSK, PM, PSK, and
AM - both internal and external modulation. These function AM - both internal and external modulation. These function
generators can address a wide range of applications. genegrators can address a wide range of applications.
Logarithmic mode is supported only for trequency sweeping.

External 10 MHz frequency reference input, synchronous operation of multiple generators
A high-accuracy frequency can be output when an external 10 MHz stan-
dard signal dard signa
(REF IN).
 ter/slave connections", using the frequency reference output (REF OUT) ter/slave connections*, using the requency reference output (REF OUC
and frequency reference input (REF IN). A multi-channel (multi-phase) oscillator can be configured. *A BNC cable is used for comnection
are required for function generators. The WF1973 and waveforms for a wide range of applications.

High Accuracy || High specifications to generate quality waveforms
Above all else, function generators must be very accurate. The WF1973 and WF1974 are high-specification instruments that deliver exceptional precision, stability and reliability in support of a wide variety of applications.

solutio	$\pm(3 \mathrm{ppm}$ of setting +2 pHz) (External frequency reference of 10 MHz usable.) $0.01 \mu \mathrm{~Hz}$	- Phase setting resolution1: 0.001 (setting range: -1800.000 to +1800.000) - Pulse wave rising/falling time: 15.0 ns to 58.8 Ms; 3 -igigit resolution/ 0.1 ns - Resolution of arbitrary waveform data amplitude: 16 bits

$\stackrel{\text { Frequency resolution: } 0.01 \mu \mathrm{~Hz}}{- \text { Amplitude accuracy }}: \pm\left(1 \%\right.$ of amplitude setting $\left[\mathrm{V}_{-\mathrm{p}}\right]+2 \mathrm{mV} V_{p-\mathrm{p}} /$ /open
Pulse wave rising/falling time: 15.0 n ns to 58.8 Ms ; 3 -digitit resolution $/ 0.1$ ns

- Resolution of arbitrary waveform data amplitude: 16 bits

Operability || Thorough pursuit of usability

Waveform display The TFT color LCD display with the QVGA
high resolution has been adopted. A variety of setup parameters can be septed. A variety and the set waveform is also displayed. and the set waveform is also displayed.
Setting errors can be avoided because the waveform to be output can be intuitively
checked. User-defined unit function
The frequency, period, phase, amplitude, DC
offset and duty can be set and displayed in
offset and duty can be set and displayed in
desired unit (up to four characters), using a desired unit (up to four characters),
specified conversion expression.

Other features
Input/output signal ground independent of
housing and sinal housing and signal ground between channels
also insulated. also insulated.

- Output voltage un can be set and displayed. - External signals can be added and output. - Up to ten settings can be saved. - USB and GPIB interfaces.
-LabVIEW driver included.
- Power supply input for 90 V AC to 250 V AC enables worldwide use. - Flat and light body (88 mm high, about 2.1 kg)

- Specifications

| Output waveforms | $\begin{array}{l}\text { Sine, suare, pulse, ramp, and parameter-variable waveforms (} 25 \\ \text { types), noise (Guussian distribution), DC, and arbitray waverom }\end{array}$ |
| :--- | :--- | Oscillation modes Continuous, moduluation, sweep, burst, and sequence

Frequency and Phas

Noise	The equivalent bandwidth is fixed to 26 MHz
CC	Frequency setting invalid

bitrary $\quad 0.01 \mu \mathrm{~Hz}$ to 5 M
requency seting resolution 0.01
requency accuracy
± 10
$\pm(3)$
$\begin{array}{ll}\text { Frequency accuracy } \\ \text { Phase setting range } & \pm(3 \text { ppm of setting }+2 \mathrm{pHz}) \text {, aging rate }: 11: \pm 1 \text { ppm/year } \\ -1800.00^{\circ} \text { to }+1800.000^{\circ}\end{array}$
∇ Output Characteristics

Setting range	$0 \mathrm{~V}_{\mathrm{p} \text {-p }}$ to $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p} / \mathrm{open},} 0 \mathrm{~V}_{\mathrm{p} \text {-p }} 10 \mathrm{~V} \mathrm{~V}$ p/ $/ 50 \Omega$ $\mathrm{AC}+\mathrm{DC} \leq \pm 10 \mathrm{~V} /$ open
Setting resolution	999.9 mV p.p or less: 4 -digit $/ 0.1 \mathrm{mV}$ P-p
Accuracy ${ }^{*+1 * 3}$	$\pm\left(1 \%\right.$ of amplitude setting [$\left[V_{p-p]}+2 \mathrm{mV}\right.$
Setting unit	
Resolution of waveform amplitude	Approx. 14 bits (36 mV -p/open or greater)
Setting range	$\pm 10 \mathrm{~V} / \mathrm{penen}, \pm 5 \mathrm{~V} / 50 \Omega$
Setting resolution	499.9 mV or less: 4 -digit/ $0.1 \mathrm{mV}, \pm .5 \mathrm{~V}$ or greater: 5 -digit/ 1 mV
Accuracy ${ }^{* / 1}$	$\pm(11 \%$ of DC offset setting [V]l $+5 \mathrm{mV}+0.5 \%$ of amplitude setting $\left.\left[V_{p-p}\right]\right) /$ open $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$ when outputting sine waves of 10 MHz or less)
Output impedance	50Ω unbalanced
Synchronous/ sub output	Sync signals: TTL level internal modulation signal: -3 V to $+3 \mathrm{~V} /$ open Sweep X drive: 0 V to $+3 \mathrm{~V} /$ open

\checkmark Signal Characteristic

Amplitude frequency characteristics*					
	$\begin{aligned} & \text { Total ha } \\ & \text { distortio } \end{aligned}$	10 Hzz to 20 kHz	:0.2\% or less (0.5		
	Harmonic spurious*		5 V_{0}		
			-60 dBC or less		
		MHz to 10 MHz	-50 dBc or less		
		MHz to 30 MHz	-40 dBc or less	30 dBC or les	
	$\begin{aligned} & \text { Non-harmonic } \\ & \text { spurious*1 } \end{aligned}$	10 MHz to $10 \mathrm{MHz}-50 \mathrm{dBC}$ or less10 MHz to $30 \mathrm{MHz}-45 \mathrm{dBc}$ or less			
	D	Standard: Setting range: 0.0100% to 99.9900% Upper limit (\%): 100 - frequency (kHz)/300 Lower limit (\%): frequency (kHz)/300 Jitter: 300 ps rms or less typ. Extended: Setting range: 0.0000% to 100.0000% Jitter: 2.5 ns rms or less typ.			
	Rising/falling	17 ns or less			
	Overshoot	5\% or less typ.			
$\left\|\frac{0_{2}^{2}}{2}\right\|^{1}$	Pulse width	Duty setting range: 0.0170% to 99.9830% Time setting range: 25.50 ns to 99.9830 Ms			
	Rising falaling time	Setting range 15.0 ns to $58.8 \mathrm{Ms}(3$-digitit 0.1 ns$)$ Rising/falling time independently set The minimum setting value is 0.01% of period or 15 ns , whichever is larger.			
	Overshoot	5% or less typ.			
Ramp wave		Symmetry setting range: 0.00% to 100.00%			
		Unbalanced sine, clipped sine, CF controlled sine, conduction angle controlled sine, staircase sine, and multi-cycle sine waves			
		On-phase controlled sine, off-phase controlled sine, chattering-on sine, and chattering-off sine waves			
		Gaussian pulse, Lorentz pulse, Haversine, half-sine pulse, trapezoid pulse, and Sin (x)/x			
		Exponential rise, exponential fall, 2nd order LPF step response, and damped oscillation			
		Oscillation surge and pulse surge			
		Trapezoid with offset, half-sine edge pulse, and bottom referenced ramp waves			

eform length	4 K to 512 K words (2^{n}, $\mathrm{n}=12$ to 19) or the number of control points is 2 to 10,000 (Control points are linearly interpolated.)
Total of waveform	Up to 128 waves or 4 M words (total of channels 1 and 2),
Resolution	16 bits

\checkmark Modulation

Sweep types	Frequency, phase, amplitude, DC offset, and duty
Sweep functions	One-way (ramp wave shape)/shuttle (triangle wave shape) selectable Linear/logarithmic selectable (only when sweeping the frequency)
Sweep range setting	The start and stop values or the center and span values are specified.
Sweep time setting range	$0.1 \mathrm{~ms} \mathrm{to} 10,000 \mathrm{~s}$ (4-digit/ 0.1 ms)
Sweep modes	Continuous/single-shot/gated single-shot selectable Oscillation only occurs during sweep execution in the gated single-shot mode.
Trigger source	Internal/external selectable
Internal trigger oscillator	Period setting range: 100.0 us to $10,000 \mathrm{~s}$ (5 -digitit 0.1 s)
Stop level setting	The signal level while oscillation is stopped in the gated single-shot sweep mode is specified Setting range: -100.00% to $+100.00 \%$ (with reference to the full scale of amplitude) or off
Sweep input/output	Sweep sync/marker output, sweep X drive output, sweep external control input, and sweep external trigger inpu

V Burst/Trigger/Gate

Burst modes	$\begin{array}{l}\text { Auto burst, trigge burst, gate, and triggered gate modes } \\ \text { (The gate is sturned on of of at aech trigger in the triggered } \\ \text { gate mode }\end{array}$

Number ot makk space waves
0.5 to $999,999.5$ cycles, in 0.5 -cycle un

Number of oscillation
waves in the gate mode
1 cycle 0.5 cycles selectable
Phase setting range
Stop level
-1800.000° to $+1800.000^{\circ}$
$-1800.000^{\text {o }}$ o $+1800.000^{\circ}$
The esigna level whilo oscillation is stopped is specified.
Setting
 Oscililation stops at the set oscillation start/stop phase
when the stop leve lis set to offlater
Internal extermal selectable, manual trigger allowed
Trigger source
Internal trigger oscillator
Trigger delay
 Except for Input impedance 10 kR (pulled up to +3.3 V)

Manual trigge

Step time, hold operation, jump destination,
number of fumps, step stop phase, branch
 Wave form, frequency, phase, amplitude, DC oftset,
and scuare wave duty and square wave duty -The ramp and parameter-variable waveforms can be - The ramp and parameter-variable waveforms can
used ater being saved as aribitray waveform. 128
axa number of

sable waveforms Number of saved sequences Number of steps Step time operation in step | Number of jumps |
| :--- |
| Branch operation |

$$
\begin{aligned}
& \text { Constant, keep, and lir } \\
& \text { wavéren switching) } \\
& \hline 1 \text { to } 999 \text { or or unliminited }
\end{aligned}
$$

∇ 2-channel Ganged Operation (WF1974 only)

$$
\begin{aligned}
& \text { sequences saved in the nonvolatile memory } \\
& \text { pt o } 255 \text { steps per sequence }
\end{aligned}
$$

Equivient setting,
same operation
same operation
Frequency difference
setting range setting range
Frequency ratio $\mathrm{N}: \mathrm{M}$ Feteuuncy ratio $N: M$
setting range
Phase synchronization

Exemal 10 MHzz trequency reference input	Input voltage: $0.5 \mathrm{Vp}-\mathrm{p}$ to 5 Vp -p, sine or square waves
Frequency reference output	For synchronization when more than one WF1973 and/or WF1974 are used Output voltage: $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p} / 50} \Omega$,square wave, 10 MHz
unction	Function to add the extemal signal to the waveform output signal
Addition gain	$\times 2 / \times 10 /$ off selectable The maximum output voltage range is fixed to $4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}(\times 2)$ or $20 \mathrm{Vp} \mathrm{p}(\times 10)$.
Input voltage/ input frequency	$\begin{aligned} & -1 \mathrm{Vto}+1 \mathrm{~V} \\ & \mathrm{CC} \text { to } 10 \mathrm{MHz}(-3 \mathrm{~dB}) \end{aligned}$
Input impedance	10 k , unbalanced
Multi input/output	Used for sweep and sequence control
Synchronization of multiple units	Sync operation is possible. Up to 6 units can be connected with BNC cables in the form of master/slave connections, using the frequency reference output and external 10 MHz frequency reference input
Fur	Sets and displays the value in any unit, using a specified conversion expression.
Setting target	Frequency, period, amplitude, DC offset, phase, and duty
Conversion expression	[(setting target value) $+n] \times m$ or [logio (setting target value $+n] \times m$ The conversion expression, n and m are to be specified.
Unit character string	Up to four characters
Memory to save setting	10 setings can be memorized (saved in the nonvolatile mem
erface	GPIB and USBTMC (SCP-1999 and IEEE-488.2)

∇ General Characteristics

Display	3.5" T FT color LCD
Input/output ground	- The signal grounds for waveform output, sync/sub output and external modulation/addition input are insulated from the housing. (These signal grounds are common within the same channel.) The signal ground for external 10 MHz frequency reference input is insulated from the housing. - Each signal ground for CH1, CH2 and external 10 MHz frequency reference input is independent.
Power supply	AC100 V to $230 \mathrm{~V} \pm 10 \%(250 \mathrm{~V}$ max.) $50 \mathrm{~Hz} / 60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$
Power consumption	WF1973: 50 VA max
Operation temperature humidity range	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}, 5 \% \mathrm{RH}$ to $85 \% \mathrm{RH}$ (Absolute humidity: $1 \mathrm{~g} / \mathrm{m}^{3}$ to $25 \mathrm{~g} / \mathrm{m}^{3}$, no condensation)
Weight	Approx. 2.1 kg (main unit excluding accessories)
Safety a	Safety: EN 61010-1: 2010
Unless otherwise specified, the value assumes the following conditions: continuus oscillation *2: Used after converted into arbitrary waveform	

$$
\begin{aligned}
& \begin{array}{l}
\text { TWo chanation independent, two phases (same frequency), } \\
\text { constant frequencoy difference, constant trequency ratio, }
\end{array} \\
& \begin{array}{l}
\text { constant trequency difiererce, constant trequency ratio } \\
\text { and } \\
\text { and diferential output ssame trequency, amplitude, }
\end{array} \\
& { }^{\text {and }} \mathrm{C} \text { offtet, reversed waveform) } \\
& \text { Set two channels at the same time. }
\end{aligned}
$$

$\begin{aligned} & 1 \text { 9.,999,999 (for } N \text { and } M \text {, respectively) } \\ & : M=C H 2 \text { trequenc }\end{aligned}$
$\begin{aligned} & \text { Function to restarn trom the thequase where the output } \\ & \text { waveforms tor all the channels are set a }\end{aligned}$
$\begin{aligned} & \text { wavetorms for all the channels are set, } \\ & \text { execution at channel mode swith }\end{aligned}$

\square.

.NI-VISA from National Instruments
.NI-VISA from National Instruments

Editing functions	- Generation (standard waveform and a mathematical expression) Interpolation (straight ine, spline, and continuous spline Math operation (addition, subtraction, multipicaction, and division of waveform) - Contraction and exeinsion (verical and horizontal diriections - Cuts, copies, and pastes some part of waveform - Undo function - Saves and reads arititry waveform datat tolfrom a file -Waveforms can be edited without connecting the device
Display functions	- Zoom in/out - Scrill - Dislay unit (coordinates) selectable - Cursor (A, B)
Transer functio	- Transfers and reads arbitrary waveform data to/from the device.
Device control function	- Maior parameter setting
Operating environment	*Same as the operating environment tor the Sequence

\square Dimensions

- Unitit mm
- The WFig7 and WF 1974 have the same
dimensions but difter in the number of BNO comnectors on the rear panel.
- This diagram shows the $W F$ F 1974.

MULTIFUNCTION
GENERATOR
WF1973
WF1974

W WAVE FACTORY Lineup/Selection Guide			The following list summarizes the features of each model. For detailed specifications, refer to their respective catalogs, Web pages, or other documents.			
	30 MHz				200 MHz	
Model name	WF1973	WF1974	WF1947	WF1948	WF1967	WF1968
Appearance	WF1974					
Oscillation frequency	$0.01 \mu \mathrm{~Hz}$ to 30 MHz		$0.01 \mu \mathrm{~Hz}$ to 30 MHz		$0.01 \mu \mathrm{~Hz}$ to 200 MHz	
Number of channels	1	2	1	2	1	2
Vertical resolution for waveform	14 bits		16 bits		16 bits	
$8 \sim$	$0.01 \mu \mathrm{~Hz}$ to 30 MHz		$0.01 \mu \mathrm{~Hz}$ to 30 MHz		$0.01 \mu \mathrm{~Hz}$ to 200 MHz	
$\stackrel{\square}{\text { ¢ }}$ П (duty fixed)	$0.01 \mu \mathrm{~Hz}$ to 15 MHz		$0.01 \mu \mathrm{~Hz}$ to 20 MHz		$0.01 \mu \mathrm{~Hz}$ to 70 MHz	
$\stackrel{\text { O }}{ }$	$0.01 \mu \mathrm{~Hz}$ to 15 MHz		$0.01 \mu \mathrm{~Hz}$ to 20 MHz		$0.01 \mu \mathrm{~Hz}$ to 70 MHz	
O (symmetry variable)	$0.01 \mu \mathrm{~Hz}$ to 5 MHz		$0.01 \mu \mathrm{~Hz}$ to 5 MHz		$0.01 \mu \mathrm{~Hz}$ to 20 MHz	
$\begin{aligned} & \text { Parameter-variable waveforms } \\ & \text { 데 } \\ & \text { Pa types) } \\ & \text { (25 } \end{aligned}$	$0.01 \mu \mathrm{~Hz}$ to 5 MHz		-		$0.01 \mu \mathrm{~Hz}$ to 20 MHz	
O Arbitrary waveform	$0.01 \mu \mathrm{~Hz}$ to 5 MHz		$0.01 \mu \mathrm{~Hz}$ to 5 MHz		$0.01 \mu \mathrm{~Hz}$ to 20 MHz	
$\stackrel{\sim}{3}$	Bandwidth: 26 MHz		Bandwidth: 26 MHz		Equivalent bandwidth: Select from $100 \mathrm{M} / 30 \mathrm{M} / 10 \mathrm{M} / 3 \mathrm{M} / 1 \mathrm{M} / 300 \mathrm{k} / 100 \mathrm{kHz}$	
Frequency setting resolution	$0.01 \mu \mathrm{~Hz}$				$0.01 \mu \mathrm{~Hz}$ ($<50 \mathrm{MHz}$), $0.1 \mu \mathrm{~Hz}(50 \mathrm{MHz} \leq)$	
Rising/falling variable Arbitrary waveform data length/ number of waves	Pulse: 15 ns to 58.8 Ms		Pulse: 15 ns to 62.5 Ms		Pulse: 4.21 ns to 58.8 Ms	
	4 K words to 512 K words/ 128 waves, 4 M words				4 Ki words to 1 Mi words/ 128 waves, 4 Mi words*1	
Maximum output voltage/resolution	$20 \mathrm{Vp-p/open} ,10 \mathrm{Vp-p/50} \Omega$, Resolution: 0.1 mVp -p or 1 mVp -p (depending on conditions)					
Continuous oscillation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Burst/trigger/gate/ triggered gate	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\% Sweep	Frequency, phase, amplitude, DC offset, duty ratio					
$$	FM, FSK, PM, PSK, AM, DC offset and PWM					
\bar{U} Burst with modulation/ O Sweep with modulation	-	-	-	-	\bigcirc	\bigcirc
Sequence	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
Two channel mode	-	\bigcirc	-	\bigcirc	-	\bigcirc
Synchronous operation	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Synclator function	-	-	-	-	\bigcirc	\bigcirc
Synchronization/sub-output	Sync signals/Internal modulation sync/Sweep X drive				Sync signals/Internal modulation sync/ Sweep X drive/Sub output*3	
Input/output floating	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Isolation between channels	-	\bigcirc	-	\bigcirc	-	\bigcirc
External addition	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
GPIB interface	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
USB interface	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Arbitrary Waveform Editor	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Sequence Editor	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
Power supply	90 to 250 V AC					
Power consumption	50 VA or les	75 VA or less	50 VA or les	75 VA or less	65 VA or less	85 VA or less
External dimensions (mm)*2	216 (W) $\times 88(\mathrm{H}) \times 332(\mathrm{D})$		216 (W) $\times 132.5$ (H) $\times 288$ (D)		216 (W) $\times 132.5(\mathrm{H}) \times 332(\mathrm{D})$	
Weight	approx. 2.1 kg		approx. 2.6 kg		approx. 3.0 kg	
* Ki and Mi represent $2^{10}=1024$ and $2^{20}=1048576$ *2 Not including projections *3 Available waveform : sine, square (duty 50%), ramp (symmetry 50%), rising ramp, falling ramp, noise and arbitrary waveform.						

Note: The contents of this catalog are current as of Novemober 29th, 2019
Products appearance and specificaitons are subject to change without notice.
Before purchase contact us to confirm the latest specifications, price and delivery date

Cosinus Messtechnik GmbH * Rotwandweg 4 * D-82024 Taufkirchen
Tel.: 089-665594-0 * Fax: 089-665594-30 * Web: www.cosinus.de * eMail: office@cosinus.de

