

LCR Meter

ZM2371 ZM2372 ZM2376

- Maximum speed: 2 ms
- Basic accuracy: 0.08%

LCR meter series that achieves high-speed, high-precision stable measurements

For use in laboratories, for use on production lines

LCR meter

NF's ZM series LCR meters cover a wide frequency range, from the low-frequency region of 1 mHz up to 5.5 MHz. Supports a wide range of applications, from materials research to component production lines, by means of high-speed, low measurement fluctuation.

1 mHz to 100 kHz -

ZM2371

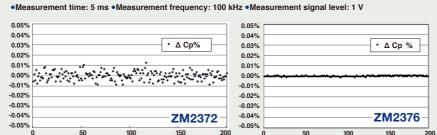
ZM2372

1 mHz to 5.5 MHz ——

ZM2376

Lineup & Comparison sheet of specifications

Specificatins & functions	ZM2371	ZM2372	ZM2376
Measurement parameters	Primary parameters: IZI, IYI, L,	C, R, G Secondary parameters:	Q, D, 0 , X, B, Rs, Rp, G, Lp, Rdc
Measurement frequency	1mHz to	100kHz	1mHz to 5.5MHz
Basic accuracy		0.08%	
Measurement signal level	10n	mVrms to 5Vrms, 1μArms to 200m/	Arms
Internal DC bias	0 to +	-2.5V	0 to +5V
Measurement 1kHz		Maximum speed: 2ms	
time 1MHz	-	-	Maximum speed:2ms
Constant voltage and Constant			
current mode (ALC)	O	0	
Contact check	-	(4 terminals)	0
Low capacitance check	-	-	0
Comparator	○ (9 bins)	○ (14 bins)	(14 bins)
Multi-measurement	-	○ (32 steps)	
Handler interface	-	0	0


Low measurement fluctuation result, excellent accuracy

Measurement of 10 µF capacitor

	surement time: 10 ms •Measurement frequency: 120 Hz
0.05%	surement signal level: 1 V
0.04%	
0.03%	+ Δ Cp%
0.02%	
0.01%	
0.00%	
-0.01%	
-0.02%	
-0.03%	
-0.04%	ZIVI23/2
-0.05%	0 50 100 150 200

Result using the ZM2376 and ZM2372 to measure a 1 nF and a 10 µF capacitor 200 times under the following conditions. With the ZM2376, the accuracy of the measurement has been improved further.

Measurement of 1nF capacitor

Supports a wide range of high-speed, high-precision measurements

■ Wide measurement frequency range and high-resolution settings -----

ZM2371 and ZM2372 cover a frequency range of 1 mHz to 100 kHz, while ZM2376 covers frequencies from 1 mHz to 5.5 MHz. The resolution can be set to 5 digits or 6 digits* making it possible to perform measurements at frequencies actually used for a variety of components, in addition to evaluation of the frequency dependence of the parameters.

*ZM2371, ZM2372: 5 digits, ZM2376: 6 digits

■ High speed measurement ------

Measurement speed is selectable from 5 levels: RAP (rapid), FAST, MED, SLOW and VSLO (very slow). When set to RAP, high-speed measurement at 2 ms (1 kHz/1 MHz) or 10 ms (120 Hz) can be performed. This high-speed, high-precision LCR meter will help to improve the measurement efficiency of production lines and automatic inspection equipment.

DC bias voltage -----

The built-in DC bias power supply of 0 to +2.5 V for ZM2371 and ZM2372, and 0 to +5 V for ZM2376 enables the measurement of polar components such as electrolytic capacitors.

With the ZM2376, high-speed impedance measurements, such as for lithium-ion batteries (single cell), are also possible. (See page 3.)

In addition, the use of an optional DC bias voltage adapter* makes it possible to apply a bias voltage of ± 40V to a sample enabling support for such measurements as the voltage dependence of high-capacity multi-layer ceramic capacitors

■ Wide range of test signal and ALC functions -----

The measurement signal level can be set at a resolution of 3 digits to 10 mVrms to 5 Vrms, or 1 µArms to 200 mArms. In addition, by means of the automatic level control (ALC) functions, constant voltage and constant current mode can be set, making it possible to perform measurements with high reproducibility at a stable signal level that takes into account the voltage and current dependence of the sample.

High precision -----

With 0.08% basic accuracy, high-precision measurements with up to 6-digit resolution are achieved. Reliable measurements are essential for improving performance and quality, from the development of state-of-the-art devices to the component sorting on inspection lines.

■ DC resistance (DCR) measurement -----

It is possible to perform DC resistance measurements on the winding resistance of such equipment as coils or transformers

The measured values of the inductance can be displayed in the primary parameters at the same time as the DC resistance in the secondary parameters.

Enhanced features for production lines!

Contact check function -----

ZM2372 4 terminal contact check

In order to prevent measurement and selection errors due to poor contact between the measurement tip and components, ZM2372 performs a contact check measurement at four terminals to determine defects. This eliminates the output of defective products. (Additional time required for contact check: 4 ms)

ZM2376 Contact check and low capacitance check

Detects abnormally low capacitance, abnormal voltage and current, and can detect contact failures with little additional time.

■ Triggered synchronous drive -----

This function can be used to drive a sample for a period of time while contact

When performing measurements of large-capacity capacitors, it is possible to reduce the damage caused by the contact by removing the sample.

For samples with hysteresis characteristics, when measurements are performed in a short period of time, the measured values have larger fluctuations. By using triggered synchronous drive, the relationships between the time and the phase of the drive signal applied to each sample and the acquired signal are made constant. This suppresses deviations of the measured values and makes it possible to significantly reduce the measure-

Comparator -----

A maximum of 14* primary parameters can be classified in bins, and measurement results can be sorted on a set of upper and lower limits that have been set by secondary parameters. Sorting is possible by measured value, deviation or deviation %, and the comparator results can be output to the handler interface*. In addition, a beeper can be turned on depending on the comparator results.

Using the limit determination function with the remote control interface, is also possible to determine the upper and lower limits (for each one set) of the primary parameters and secondary parameters.

*ZM2371: 9 classifications max. Not equipped with handler interface

Checks whether there is continuity along the dotted lines (contact check).

the contact check in Step 1, perform measuremen along the dotted lines (main

▲ 4 terminal contact check (ZM2372)

■ Deviation display -----

When measuring a component, a preset value can be set and the deviation and the deviation % of the measured value compared with the preset can be displayed.

This can be useful for making acceptance judgments against standard component tolerance values as well as for temperature characteristic tests

■ Multi-measurement ---- ZM2376

Multi-measurement is a function used for overall acceptance judgments by performing up to 32 steps for each sample. Multiple measurement conditions can be set for each step such as measurement frequency, measurement signal level, internal DC bias, and measurement parameters.

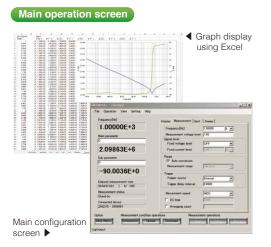
Measurements and limit determinations can be performed based on the set of upper and lower limits of the primary parameters and the set of upper and lower limits of the secondary parameters.

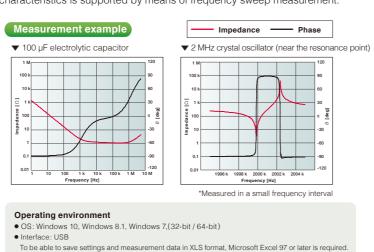
*This function available only on ZM2376.

Interfaces -----

Equipped with various standard interfaces for remote control. Integrates into production lines and automatic inspection systems without any additional options.

Interfaces	ZM2371	ZM2372	ZM2376
USB	0	0	0
RS-232	0	0	0
GPIB	-	0	0
LAN	-	_	○ (optional)
Handler	-	0	0

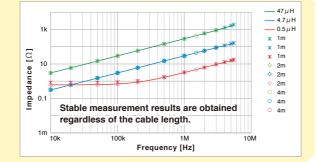



Other features

- Correction functions (Open correction, short correction, load correction, cable length correction)
- Setting and correction value memory (32 sets, switchable to be saved to non-volatile memory)
- Monitor display (voltage and current)
 Discharge protection
 Sample program (C #, VB.NET) included
- LabVIEW driver included (ZM2371 and ZM2372)
- IVI instrument drivers included (LabVIEW drivers automatically generated on the LabVIEW system) (ZM2376)

Application software (included as standard accessories) -----

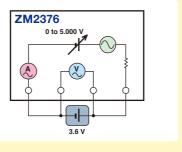
Software capable of setting various measurement conditions and acquiring and displaying measurement data is included. Measurement data can be acquired in CSV file format, making it convenient to process very large amounts of data for research and development. In addition, measurement of impedance frequency characteristics is supported by means of frequency sweep measurement.



For integrating into component production lines and automatic sorting devices.

With measurements at a maximum speed of 2 ms and with small deviation, correction functions to suppress the influence of the cable connecting to the sample, comparator and contact check * functions, as well as handler interfaces* for automatic sorting, this LCR meter supports a variety of line needs.

*ZM2371 is not equipped.


Inductor measurement example > (Cable length 1 m, 2 m, 4 m)

For high-speed impedance measurements of lithium-ion batteries.

The internal DC bias voltage of ZM2376 can be set up to +5 V, enabling electromotive force of more than 3 V to be measured in lithium-ion batteries

In addition, since measurements can be performed from a low frequency of 1 mHz, a detailed assessment of the internal impedance of the battery is possible.

	ZM2371	ZM2372	ZM2376		
Measurement parameters					
Primary parameters	Z , Y , L, C, R, G For e	quivalent circuit of L, C, and R, Parallel / Serie	s / Auto Selection are selectable.		
Secondary parameters		Q, D, θ, X, B, Rs, Rp, G, Lp, Rdc			
Auto parameter selection	Primary parameters (includin	g equivalent circuit) and secondary parameter	rs can be selected automatically.		
Measured value display range	*Actual measurement and display ranges of respecti	ve parameters are restricted by the measurement range	ge or frequency.		
Z		0.000 m Ω to 999.99 9M Ω			
$R(R_S,R_P,R_{dC}), X$		0Ω , $\pm (0.001 \text{m}\Omega \text{ to } 999.999 \text{M}\Omega)$			
Y		0.00nS to 9.99999kS			
G, B		0S, ±(0.01nS to 9.99999kS)			
C (C _P ,C _S)	0F, ±(0.00001p	·	0F, ±(0.00001pF to 99.9999kF)		
L (Ls,Lp)	0H, ±(0.001nH	· · · · · · · · · · · · · · · · · · ·	0H, ±(0.00001nH to 9.99999GH)		
Q, D		0, ±(0.00001 to 99999.9)			
θ .		±180.000deg			
Measurement conditions	Cotting rengert militate 100kl in Decel	tion E digita (1ml la urban + 10Lla)	*Cotting recorded in to E.E.M. in Depolution C. digita (4 ml in urban, a 4001 in)		
Measurement frequency	Setting range:1mHz to 100kHz, Resolu	Accuracy: ±0.01%	Setting range:1mHz to 5.5MHz, Resolution 6 digits (1mHz when < 100Hz)		
Measurement signal level	Setting range: 10mVrms to 5.00Vrms, Resolution 3	digits (1mVrms when < 100mVrms). RMS values at	open output. (ZM2376: Limited by frequency and DC bias.)		
Wedgarement signal level	Accuracy: ±(1	0%+5mV rms)	: Accuracy: ±(8%+5mV rms)≤1MHz, ±(10%+5mV rms)>1MHz		
Constant voltage mode /		nstant voltage mode / Constant current mode			
		· · ·	1μArms to 200mArms, Resolution: 3 digits(<10μArms: 0.1μArms)		
Output impedance	$5\Omega/25\Omega/100\Omega$ Automatically selected	<u> </u>	:6Ω/25Ω/100Ω Automatically selected according to the measurement range.		
Internal DC bias	Setting range: 0V to +2.50V, Resolution		Setting range: 0V to +5V, Resolution: 1mV, Limited by the signal level		
T ·	INT. L. L. L.	It can be turned on / off at open output			
Trigger source	-	continuous trigger), MAN: Manual, EXT: Handle	.		
Trigger delay time	Setting range: 0.000s to 9s (Time after input of trigger un	99.999s, Resolution: 0.001s	Setting range: 0.0000s to 999.9999s, Resolution: 0.0001s(Time after input of trigger until start of signal acquisition)		
Triggered drive		electable: Drive only at measurement / Continu			
Measurement speed		RAPid/FAST/MEDium/SLOW/VerySLO			
Measurement time (reference)		From trigger in to end of measurement signa			
Measurement range	8 ran	ges (1MΩ, 100kΩ, 10kΩ, 1kΩ, 100Ω, 10Ω,			
Measurement range selection:		Auto/Manual	,		
Measurement accuracy					
Basic accuracy	0.08%	Refer to appendix (ZM2371/ZM2372: P.5	, ZM2376: P. 6)		
Other measurement related functions					
Correction function		Open, Short, Load and Cable Length			
Contact check	_	Detects a contact failure at four contact points	Detects of an abnormally low capacitance or		
Contact cricon		Additional time 4ms (reference)	abnormal voltage/current		
Averaging		1 to 256 times			
Deviation measurement	Primary parameters/Secondar	y parameters: Deviation and deviation % from	reference value can be displayed.		
	Primary parameters: Max. 9 bins		ers: Max. 14 bins		
Comparator	Original measured value / Deviation / Deviation % can be sorted.	Original measured value / Deviation			
	Secondary parameters: Upper limit and	d lower limit comparison. Original measured va			
Handler interface	_	Input signal: Trigger, Key lock, Sett Output signal: Comparison result BIN1 to BIN11	optically isolated (withstand voltage ±42V) ings/correction value memory designation. , NC / BIN12, PHI / BIN13, PLO / BIN14, OUT OF BINS, N14 are used, NC, PHI, and PLO cannot be used).		
Multi-measurement	_		Execute measurement and limit comparison under multiple conditions for the total comparison. Maximum number of steps: 32		
Monitor display	Voltage va	alue applied to the DUT and current value flow	ing in the DUT.		
Remote control interface					
USB		USBTMC, USB1.1 Full-speed			
RS-232		Data rate: 4800bps to 230400bps			
GPIB	_	Conforms to IEEE 488.1	and IEEE 488.2 Standards		
LAN (optional)	-	_	: 10BASE-T, 100BASE-TX		
General specifications					
	Voltage: AC 100V to 230V ±10%, but 250V or less				
Power supply		Frequency: 50/60Hz, ±2Hz			
	Power consumption: 70VA or less	Power consumption: 75VA or less	: Power consumption: 75VA or less		
	O T	Overvoltage category II			
Environmental conditions		b +40°C. Humidity: 5 to 85%RH. (Absolute hum			
Environmental conditions	Storage: Temperature: -10 to	+50°C. Humidity: 5 to 95%RH. (Absolute hum	iidity i to 29g/m², non-condensing.)		
Sattings/correction value moment	20 anta Cattinno	Pollution degree 2 (indoor use)	o individually or together		
Settings/correction value memory		and correction values can be saved and restor	, ,		
Resume External dimensions		ast setting and correction value are restore at proteinal uding proteinances			
		not including protuberances) Approx. 2.1kg	: 260(W)×88(H)×280(D)mm (not including protuberances)		
Weight (without accessories)	177 - 0		: Approx. 2.4kg e program), LabVIEW driver (ZM2371/ZM2372)		
Accessories	IVI drivers (ZM2376).	ianuai, OD-HOW (application Soltware, Sample	, program, Labrier univer (ZIVIZ3/ 1/ZIVIZ3/Z)		
	• -/				

Measurement time (reference) ZM2371, ZM2372 *1: Appendix

Measurement frequency	RAP	FAST	: MED	SLOW	VSLO
120 Hz	10 ms	10 ms	26 ms	126 ms	501 ms
1 kHz	2 ms	5 ms	: 25 ms	. 121 ms	501 ms
10 kHz	3 ms	5 ms	25 ms	122 ms	502 ms
100 kHz	3 ms	5 ms	25 ms	122 ms	502 ms

		-	-		
Measurement requency	RAP	FAST	MED	SLOW	VSLO
120 Hz	10 ms	10 ms	26 ms	126 ms	501 ms
1 kHz	2 ms	5 ms	25 ms	121 ms	501 ms
10 kHz	2 ms	5 ms	25 ms	121 ms	501 ms
100 kHz	2 ms	5 ms	25 ms	121 ms	501 ms

1 MHz 2 ms 5 ms 25 ms 121 ms 501 ms

*2: Appendix

Measurement time (reference) ZM2376

■ Measurement accuracy ZM2371/ZM2372

Impedance measurement accuracy

Zr: Measurement range (100m Ω to 1M Ω)

Zx: Measured value of impedance magnitude |Z|.

With the above definitions, the impedance measurement accuracy is obtained as follows:

Accuracy of impedance magnitude |Z| ±Az [%]

$Az = (A + B \times U + Kz + Ky) \times V \times KT + KB \times U$

Accuracy of phase angle θ of impedance $\pm Pz$ [°] $Pz = 0.573 \times Az$

* The measurement accuracy when Az exceeds 10[%] is a reference.

* The measurement accuracy for the measured value smaller than half the lower limit of each recommended measurement range or larger than twice the upper limit

Each parameter value in the expression is listed below.

U: Ratio coefficient

Zx	U
>100Ω	Zx/Zr (1 when $Zx/Zr < 1$)
≦100Ω	Zr/Zx (1 when Zr / Zx < 1)

A (upper row): Basic coefficient[%]

· Each values in column "Left side" is FAST Mode, "Right side" is MED/SLOW/VSLO Mode. At RAP Mode: Measurement frequency ≤ 250Hz: Use B (lower row): Proportional coefficient[%] At MAP Mode: Measurement induction of the FAST value, > 250Hz: Multiply FAST value by 1.3.

 $(\leq 20 \text{kHz}), 10 \text{k}\Omega, V(Zr=10\Omega, 1\Omega) V(Zr=100 \text{m}\Omega)$ **100k**Ω signal level $1k\Omega$, 100Ω) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 3 2 1.3 2<Level≤5 1<Level≦2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.8 1.5 1.2 1.4 1.2 1.2 1.4 1.2 1.2 1.5 1.5 1.2 2.5 2 1.2 0.5<Level<1 **0.2<Level≤0.5** | 1.4 | 1.3 | 1.4 | 1.3 | 1.3 | 2.5 | 2.2 | 1.3 | 3 | 3 | 1.3 **0.1<**Level**≤0.2** 2.2 2.2 1.4 1.4 1.4 1.4 3.5 3.5 1.4 ×(0.5Vrms/ **0.05<**Level≦**0.1** 2.5 2.5 1.6 1.8 1.6 1.6 ×(0.2Vrms/ signal level v(0 1Vrms/ Measurement 0.02<Level≤0.05 4 2.8 2 signal level [Vrms])

 $V(Zr=100k\Omega)$

Three coefficients in each column are applied to the r rement speeds RAP_FAST_MED from the left in order The coefficient for measurement speeds SLOW and VSLO is same as MED.

8 5 3

For FAST, the coefficient of MFD is applied when measurement frequency≤40Hz.

[Vrms])

● V: Signal level coefficient

Measurement

0.01≦Level≦**0.02**

 $V(Zr=1M\Omega,$

For RAP, the coefficient of FAST when measurement frequency≦250Hz, or that of MED when measurement frequency≤40Hz is applied.

coefficient varies depending on the frequency when measurement range Zr = $100k\Omega$. At all times, V = 1 for the direct-current resistance Rdc.

	C 17 for Valide, 2 250 f.2. Widiliphy 17 for Valide by 1.5.								
Measurement	Measurement frequency Hz								
range Zr	0 (DC)	99.999 7 1m	999.99 7 100	1k	1.9884k 7 1.0001k	10k 7 1.9885k	20k ↗ 10.001k	50k ↗ 20.001k	100k 7 50.001k
1 ΜΩ	0.14 0.14 0.02 0.02	0.50 0.50 0.30 0.30	0.15 0.15 0.025 0.025	0.12 0.10 0.03 0.02	0.15 0.15 0.03 0.03	0.25 0.25 0.03 0.03	0.25 0.25 0.03 0.03		
100kΩ	0.12 0.12	0.25 0.25	0.15 0.15	0.09 0.09	0.10 0.10	0.20 0.20	0.25 0.25	0.30 0.30	0.80 0.80
	0.01 0.01	0.04 0.04	0.02 0.02	0.01 0.01	0.015 0.015	0.025 0.025	0.03 0.03	0.03 0.03	0.03 0.03
10kΩ	0.09 0.09	0.20 0.20	0.15 0.15	0.08 0.07	0.09 0.09	0.16 0.16	0.20 0.20	0.25 0.25	0.80 0.80
	0.01 0.01	0.03 0.03	0.02 0.02	0.01 0.01	0.01 0.01	0.015 0.015	0.02 0.02	0.03 0.03	0.03 0.03
1kΩ	0.09 0.09	0.20 0.20	0.15 0.15	0.08 0.07	0.09 0.09	0.16 0.16	0.20 0.20	0.25 0.25	0.30 0.30
	0.01 0.01	0.03 0.03	0.02 0.02	0.01 0.01	0.01 0.01	0.015 0.015	0.02 0.02	0.03 0.03	0.03 0.03
100Ω	0.09 0.09	0.20 0.20	0.15 0.15	0.08 0.07	0.09 0.09	0.16 0.16	0.20 0.20	0.25 0.25	0.30 0.30
	0.01 0.01	0.03 0.03	0.02 0.02	0.01 0.01	0.01 0.01	0.015 0.015	0.03 0.02	0.03 0.03	0.03 0.03
10Ω	0.12 0.12	0.25 0.25	0.17 0.17	0.13 0.12	0.15 0.15	0.20 0.20	0.40 0.40	0.45 0.45	0.50 0.50
	0.02 0.02	0.03 0.03	0.02 0.02	0.015 0.01	0.02 0.015	0.02 0.017	0.08 0.03	0.08 0.05	0.08 0.06
1Ω	0.14 0.14	0.40 0.40	0.30 0.30	0.22 0.20	0.25 0.25	0.35 0.35	0.60 0.60	0.70 0.70	0.90 0.90
	0.05 0.05	0.06 0.06	0.02 0.02	0.025 0.02	0.03 0.02	0.03 0.02	0.20 0.03	0.20 0.08	0.20 0.10
100mΩ	0.14 0.14	0.60 0.60	0.30 0.30	0.30 0.30	0.30 0.30	0.40 0.40	0.80 0.60	1.0 0.90	1.0 0.90
	0.30 0.30	0.40 0.40	0.15 0.10	0.06 0.04	0.06 0.04	0.06 0.03	0.80 0.06	0.80 0.10	0.80 0.10

The measurement range "---" is not used. KB: DC bias coefficient

•					
Internal	Measurement	K _B [%]			
DC bias	range Zr	Frequency≦1kHz	1kHz <frequency th="" ≦10khz<=""><th>Frequency>10kHz</th></frequency>	Frequency>10kHz	
Disabled	Full range	0	0	0	
	1ΜΩ	0.005	0.02	0.02	
	100kΩ	0.002	0.003	0.01	
Enabled"	100Ω, 1kΩ, 10kΩ	0.001	0.002	0.01	
	10Ω	0.01	0.01	0.02	
	100mΩ, 1Ω	0.05	0.1	0.2	

: When open compensation and short compensation are performed at the conditions of internal DC bias enabled and the bias voltage 0V.

At all times, KB=0 for the direct-current resistance Rdc.

■ KT: Temperature-dependent coefficient

Ambient temperature (T°C)	Кт
0 to +18	1+0.1×(18-T)
+18 to +28	1
+28 to +40	1+0.1×(T-28)

Kv: Residual admittance coefficient

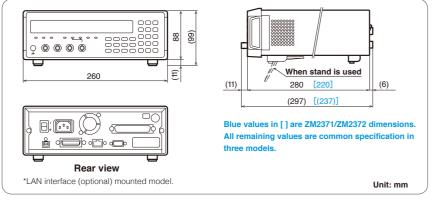
Frequency range	Ky [%]
DC, frequency≦120Hz	Zx[Ω]/(3×10 ⁸)
120Hz <frequency≦100khz< td=""><td>Zx[Ω]×frequency[kHz]/(3×10⁷)</td></frequency≦100khz<>	Zx[Ω]×frequency[kHz]/(3×10 ⁷)

Kz: Residual impedance coefficient

Frequency range	Kz [%]
DC, frequency≦120Hz	(0.003+Kc)/Zx[Ω]
120Hz <frequency≦1khz< td=""><td>(0.005+Kc)/Zx[Ω]</td></frequency≦1khz<>	(0.005+Kc)/Zx[Ω]
1kHz <frequency≦10khz< td=""><td>$(0.005+0.002\times frequency[kHz]+Kc)/Zx[\Omega]$</td></frequency≦10khz<>	$(0.005+0.002\times frequency[kHz]+Kc)/Zx[\Omega]$
10kHz <frequency≦100khz< td=""><td>(0.0025×frequency[kHz]+Kc)/Zx[Ω]</td></frequency≦100khz<>	(0.0025×frequency[kHz]+Kc)/Zx[Ω]

Cable length coefficient Kc=0.001×Frequency[kHz]×(Cable length[m])²

Other conditions	Cable length	Applicable					
Warm-up: 30 min or more	· ·	frequency range					
Zero correction: Execute open correction	0m, 1m	Full range including DC					
and short correction	2m	DC, frequency≦20kHz					
Cable length correction: Execute	4m	DC, frequency≦1kHz					


Calibration cycle 1 year

according to the connection cable length. The measurement accuracy is not guaranteed for frequencies out of these ranges.

<Recommended measurement range

easurement range	Recommended range	Measurement range
1ΜΩ	1MΩ to 11MΩ	≧900kΩ
100kΩ	100kΩ to 1.1MΩ	≥90kΩ
10kΩ	10kΩ to 110kΩ	≥9kΩ
1kΩ	1kΩ to 11kΩ	≥0.9kΩ
100Ω	9Ω to 1.1kΩ	No limitation
10Ω	0.9Ω to 10Ω	≦11Ω
1Ω	90m Ω to 1 Ω	≦ 1.1Ω
100mΩ	$9m\Omega$ to $100m\Omega$	≦110mΩ

External Dimensions **ZM2376**

■ Measurement range ZM2376

Impedance measurement accuracy

Zr: Measurement range (100m Ω to 1M Ω)

Zx: Measured value of impedance magnitude |Z|.

With the above definitions, the impedance mea urement accuracy is obtained as follows:

Accuracy of impedance magnitude |Z| ±Az [%] Signal level \leq 1V Az = (A + B × U + Kz + Ky) × KT + (Kv + KB) × U

Signal level > 1V Az = $(A + B \times U + Kz + Ky) \times KT + Kv + KB \times U$ Accuracy of phase angle θ of impedance $\pm Pz$ [°] $Pz = 0.573 \times Az$

U: Ratio coefficient

Zx	U	
>100Ω	Zx/Zr (1 when Zx / Zr < 1)	
≦100Ω	Zr/Zx (1 when Zr/Zx < 1)	

* The measurement accuracy when Az exceeds 10 [%] is a reference.

* Excluding the highest and the lowest ranges available for each frequency, the measurement accuracy for the measured value smaller than half the lower limit of each recommended measurement range or larger than twice the upper limit is

Each parameter value in the expression is listed below.

 * If the measureable range for the 10Ω range becomes unlimited depending on the minimum output impedance setting, the following values should be used.

Zx	U	
>10Ω	Zx/Zr (1 when $Zx/Zr < 1$)	
≦10Ω	Zr/Zx (1 when Zr/Zx < 1)	

● A (upper row): Basic coefficient [%]

A (upper row): Basic coefficient [%]

B (lower row): Proportional coefficient [%]

• For the measurement speeds, MED, SLOW, and VSLO, the coefficient is as shown in the table below.

• For the measurement speeds, RAP and FAST, the coefficient is 1.1 times of the value shown below.

ure- Measurement frequency Hz												
0 (DC)	999.999 ↑ 1m	1k	20k ↑ 1.00001k	50k ↑ 20.0001k	100k ↑ 50.0001k	200k ↑ 100.001k	500k ↑ 200.001k	1M ↑ 500.001k	2M ↑ 1.00001M	3M ↑ 2.00001M	4M ↑ 3.00001M	5.5M ↑ 4.00001M
0.20 0.15	0.15 0.10	0.12 0.15	0.30 0.30	_	_ _	_ _		1 1	_ _		1 1	_ _
0.06 0.03	0.06 0.03	0.06 0.03	0.06 0.06	0.08 0.08	0.20 0.08	0.20 0.08	0.30 0.10	1.00 0.30	_	_ _		_ _
0.06	0.06	0.06	0.06	0.07	0.10	0.15	0.20	0.80	1.50	1.50	1.50	2.00
0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.05	0.10	0.80	1.00	1.20	2.00
0.06	0.06	0.05	0.05	0.06	0.10	0.12	0.15	0.30	0.50	0.60	0.60	1.50
0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.05	0.06	0.20	0.30	0.30	0.30
0.09	0.12	0.05	0.06	0.06	0.06	0.12	0.14	0.15	0.30	0.40	0.40	1.50
0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.08	0.08	0.08
0.08	0.12	0.10	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.15	0.20
0.04	0.06	0.06	0.08	0.08	0.10	0.10	0.20	0.20	0.60	0.80	0.80	2.00
0.20	0.20	0.20	0.30	0.30	0.30	0.30	0.30	0.30	0.60	_	-	_
0.05	0.05	0.03	0.08	0.08	0.08	0.08	0.50	0.50	0.60	_		_
0.30	0.30	0.20	0.30	0.30	0.40	0.40	0.50	0.50	_	_		_
0.40	0.30	0.20	0.40	0.40	0.40	0.40	1.00	1.00	_	_		_
	(DC) 0.20 0.15 0.06 0.03 0.06 0.03 0.06 0.03 0.09 0.03 0.09 0.03 0.08 0.04 0.20 0.05 0.30 0.40	0 (DC) 1m 0.20 0.15 0.15 0.10 0.06 0.06 0.03 0.03 0.06 0.06 0.03 0.03 0.06 0.06 0.03 0.03 0.09 0.12 0.03 0.02 0.08 0.12 0.04 0.06 0.20 0.20 0.05 0.05 0.30 0.30 0.40 0.30	0 (DC) 1m 1k 0.20 0.15 0.12 0.15 0.10 0.15 0.06 0.06 0.06 0.03 0.03 0.03 0.06 0.06 0.06 0.03 0.03 0.03 0.06 0.06 0.05 0.03 0.03 0.03 0.09 0.12 0.05 0.03 0.02 0.03 0.08 0.12 0.10 0.04 0.06 0.06 0.20 0.20 0.20 0.05 0.03 0.30 0.30 0.20 0.40 0.30 0.20	0 (DC) 1m 1k ↑ 1,00001k 0.20 0.15 0.12 0.30 0.15 0.10 0.15 0.30 0.06 0.06 0.06 0.06 0.03 0.03 0.03 0.06 0.06 0.06 0.06 0.06 0.03 0.03 0.03 0.03 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.03 0.09 0.12 0.05 0.06 0.03 0.02 0.03 0.03 0.08 0.12 0.10 0.12 0.04 0.06 0.06 0.08 0.20 0.20 0.20 0.30 0.05 0.05 0.03 0.08 0.20 0.20 0.20 0.30 0.30 0.30 0.20 0.30 0.40 0.30 0.20 0.30	0 (DC) 1m 1k 1.00001k 20.0001k 0.20 0.15 0.15 0.15 0.15 0.30 0.15 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	0 (DC) 999.999 ↑ 1m 1k 20k ↑ 1.00001k 50k ↑ 20.0001k 100k ↑ 50.0001k 0.20 0.15 0.10 0.15 0.30	0 (DC) 999,999 1m 1k 20k 1.00001k 50k 20.0001k 100k 50.0001k 200k 100.001k 0.20 0.15 0.15 0.15 0.15 0.15 0.30	0 (DC) 999.999 1m 1k 20k 1.00001k 50k 20.0001k 100k 20.0001k 200k 10001k 500k 100001k 500k 200.001k 500k 100.001k 500k 100.001k 500k 100.001k 500k 100.001k 500k ↑ 100.001k 200.001k 500k ↑ 200.001k 200.002 200.002 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200.003 200	0 (DC) 999,999 1m 1k 20k 1.00001k 50k 20.0001k 100k 100.001k 500k 100.001k 500k 100.001k 500k 100.001k 1M ↑ 0.20 0.15 0.15 0.10 0.15 0.30	0 (DC) 999,999 1m 1k 20k ↑ 1.00001k 50k ↑ 20.0001k 100k ↑ 100.001k 200k ↑ 200.001k 500k ↑ 100.001k 1M ↑ 2M ↑ 1.00001M 0.20 0.15 0.10 0.15 0.30	0 (DC) 999.999 1m 1k 20k 1.00001k 50k 20.0001k 100k 20.0001k 500k 100.001k 1M 200.001k 2M ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	0 (DC) 999,999 1m 1k 20k 1.00001k 50k 1.0001k 100k 1.00001k 200,001k 500k 1.00 1k 1M 200,001k 2M 1.00001M 3M 4M ↑ 0.20 0.15 0.10 0.15 0.10 0.15 0.30

The measurement accuracy is not guaranteed for *---*. The basic coefficient A of the 100Ω range is increased 1.5 times, when the output impedance is 25Ω or 6Ω below 1MHz.

Ky: Signal level coefficient

* For the DC resistance Rdc, V = 0. The measurement accuracy is not quaranteed for signal levels < 100mV. The measurement accuracy is not guaranteed for frequency > 2MHz, range = $10k\Omega$, and signal level > 2V. For other measurement parameters, the coefficient is as shown in the table below

		Signal level [Vrms]						
Meas	surement range Zr	200m	500m	999m	1	2	5	
		100m	201m	501m	'	1.01	2.01	
1110	frequency≦120Hz	0.40	0.10	0.10	0	0.10	0.15	
1ΜΩ	120Hz <frequency≦100khz< td=""><td>0.40</td><td>0.10</td><td>0.10</td><td>0</td><td>0.10</td><td>0.20</td></frequency≦100khz<>	0.40	0.10	0.10	0	0.10	0.20	
	frequency≦120Hz	0.10	0.02	0.02	0	0.03	0.10	
$100 k\Omega$	120Hz <frequency≦100khz< td=""><td>0.20</td><td>0.05</td><td>0.05</td><td>0</td><td>0.02</td><td>0.10</td></frequency≦100khz<>	0.20	0.05	0.05	0	0.02	0.10	
	100kHz <frequency< td=""><td>4.00</td><td>1.00</td><td>0.10</td><td>0</td><td>0.10</td><td>0.15</td></frequency<>	4.00	1.00	0.10	0	0.10	0.15	
	frequency≦120Hz	0.10	0.02	0.02	0	0.03	0.10	
$10k\Omega$	120Hz <frequency≦100khz< td=""><td>0.10</td><td>0.02</td><td>0.02</td><td>0</td><td>0.03</td><td>0.20</td></frequency≦100khz<>	0.10	0.02	0.02	0	0.03	0.20	
	100kHz <frequency< td=""><td>4.00</td><td>1.00</td><td>0.10</td><td>0</td><td>0.10</td><td>0.15</td></frequency<>	4.00	1.00	0.10	0	0.10	0.15	
	frequency≦120Hz	0.10	0.01	0.01	0	0.03	0.10	
1kΩ	120Hz <frequency≦100khz< td=""><td>0.10</td><td>0.02</td><td>0.02</td><td>0</td><td>0.03</td><td>0.20</td></frequency≦100khz<>	0.10	0.02	0.02	0	0.03	0.20	
	100kHz <frequency< td=""><td>0.80</td><td>0.10</td><td>0.10</td><td>0</td><td>0.30</td><td>1.50</td></frequency<>	0.80	0.10	0.10	0	0.30	1.50	
	frequency≦120Hz	0.10	0.03	0.03	0	0.03	0.15	
100Ω	120Hz <frequency≦100khz< td=""><td>0.15</td><td>0.05</td><td>0.05</td><td>0</td><td>0.10</td><td>0.20</td></frequency≦100khz<>	0.15	0.05	0.05	0	0.10	0.20	
	100kHz <frequency< td=""><td>0.20</td><td>0.05</td><td>0.05</td><td>0</td><td>0.50</td><td>3.00</td></frequency<>	0.20	0.05	0.05	0	0.50	3.00	
	frequency≦120Hz	0.20	0.03	0.01	0	0.04	0.04	
10Ω	120Hz <frequency≦100khz< td=""><td>0.15</td><td>0.05</td><td>0.05</td><td>0</td><td>0.10</td><td>0.10</td></frequency≦100khz<>	0.15	0.05	0.05	0	0.10	0.10	
	100kHz <frequency< td=""><td>0.20</td><td>0.05</td><td>0.05</td><td>0</td><td>0.10</td><td>1.00</td></frequency<>	0.20	0.05	0.05	0	0.10	1.00	
	frequency≦120Hz	0.40	0.10	0.02	0	0.03	0.03	
1Ω	120Hz <frequency≦100khz< td=""><td>0.10</td><td>0.01</td><td>0.01</td><td>0</td><td>0.01</td><td>0.01</td></frequency≦100khz<>	0.10	0.01	0.01	0	0.01	0.01	
	100kHz <frequency< td=""><td>0.10</td><td>0.01</td><td>0.01</td><td>0</td><td>0.01</td><td>0.20</td></frequency<>	0.10	0.01	0.01	0	0.01	0.20	
	frequency≦120Hz	3.50	0.80	0.50	0	0.03	0.03	
100mΩ	120Hz <frequency≦100khz< td=""><td>1.50</td><td>0.20</td><td>0.10</td><td>0</td><td>0.01</td><td>0.01</td></frequency≦100khz<>	1.50	0.20	0.10	0	0.01	0.01	
	100kHz <frequency< td=""><td>1.50</td><td>0.20</td><td>0.10</td><td>0</td><td>0.01</td><td>0.01</td></frequency<>	1.50	0.20	0.10	0	0.01	0.01	

■ KB: DC bias coefficient

* For the DC resistance Rdc, KB = 0 [%]. When the internal DC bias is disabled, KB = 0 [%]. When the internal DC bias is enabled, KB [%] is as shown in the table below

Measure-Measurement range Hz 120 20k 100k 1M 5.5M 0 (DC) range Zr 120.001 100.001k 1.00001M 1ΜΩ 0.02 0.02 100kΩ 0.01 0.01 0.01 0.01 10kΩ 0.01 0.01 0.01 0.01 0.20 1kΩ 0.01 0.01 0.01 0.01 0.20 1000 0.01 0.01 0.01 0.01 0.30 10 O 0.05 0.05 0.05 0.20 0.50 1Ω 0.50 0.50 0.20 0.20

100mΩ

ment range is not guara ■ Ky: Residual admittance coefficient

* When the cable length is 0m, the coefficient is as shown in the table below.

When an extension cable (1m 2m, or 4m) is used on the frequency of more 20kHz, the coefficient is
10 times of the value shown below.

Frequency range	Ky [%]
DC, frequency≦50kHz	$Zx[\Omega]/(2\times10^7)$
50kHz <frequency≦500khz< th=""><th>Zx[Ω]×(frequency[kHz])²/(2×10¹º)</th></frequency≦500khz<>	Zx[Ω]×(frequency[kHz])²/(2×10¹º)
500kHz <frequency≦5.5mhz< th=""><th>Zx[Ω] / (1×10⁵)</th></frequency≦5.5mhz<>	Zx[Ω] / (1×10 ⁵)

Kz: Residual impedance coefficient

Frequency range	Kz [%]
DC, frequency≦20kHz	$(0.02 + Kc) / Zx[\Omega]$
20kHz <frequency≦100khz< td=""><td>(0.05 + Kc) / Zx[Ω]</td></frequency≦100khz<>	(0.05 + Kc) / Zx[Ω]
100kHz <frequency≦5.5mhz< td=""><td>$(0.5 + Kc) / Zx[\Omega]$</td></frequency≦5.5mhz<>	$(0.5 + Kc) / Zx[\Omega]$

Kc: Cable length coefficient

Frequency range	Kc [%]
DC, frequency≦1kHz	0.01×(Cable length [m])
1kHz <frequency≦100khz< td=""><td>0.2×(Cable length [m])</td></frequency≦100khz<>	0.2×(Cable length [m])
100kHz <frequency≦1mhz< td=""><td>0.5×(Cable length [m])²</td></frequency≦1mhz<>	0.5×(Cable length [m]) ²
1MHz <frequency< td=""><td>20×(Cable length [m])²</td></frequency<>	20×(Cable length [m]) ²

*Restriction on measurement frequency and signal level depending on cable length.

Cable length	Applicable frequency range	Applicable signal level	
0m	Full range including DC	Full range	
1m	DC, frequency≦2MHz	Full range	
2m	DC, frequency≦2MHz	Full range	
4m	DC, frequency≦1MHz	Full range for DC and frequency ≤ 500kH	
4111	DO, ricquericy≡ riviriz	≦ 2V for frequency > 500kHz	

The measurement accuracy is not guaranteed for frequencies and signal levels out of these ranges.

■ KT: Temperature-dependent coefficient

Ambient	Кт				
temperature (T[°C])	frequency≦20kHz	frequency>20kHz			
0 to +18	1+0.1×(18-T)	1+0.15×(18-T)			
+18 to +28	1	1			
+28 to +40	1+0.1×(T-28)	1+0.15×(T-28)			

Warm-un; 30 min or more
 Zero correction: Execute open correction and short correction

· Cable Length Correction: Execute according to the connection cable length.

· Calibration cycle 1 year

Measurement range	Recommended range	Measurement range	Output impedance
1ΜΩ	$1M\Omega$ to $11M\Omega$	≧900kΩ	100Ω
100kΩ	100k Ω to 1.1M Ω	≧90kΩ	100Ω
10kΩ	10kΩ to 110kΩ	≧9kΩ	100Ω
1kΩ	1 k Ω to 11 k Ω	≧0.9kΩ	100Ω
100Ω	9Ω to 1.1kΩ	No limitation	100Ω*1
10Ω	0.9Ω to 10Ω	≦11Ω	100Ω*1
1Ω	90mΩ to 1Ω	≦1.1Ω	25Ω/6Ω
100mΩ	$9m\Omega$ to $100m\Omega$	≦110mΩ	25Ω/6Ω

The output impedance may be restricted depending on the frequency and signal level.

*1 For the 10Ω and 100Ω ranges, the output impedance may become 25Ω or 6Ω depending on the minimum output impedance setting. In this case, the recommended range and the measureable range for the 10Ω and 100Ω ranges change as follows:

Measurement range	Recommended range	Recommended range
100Ω	100Ω to 1.1kΩ	≧90Ω
10Ω	0.9Ω to 110Ω	No limitation

Test fixture test leads

Accurate and easy-to-perform measurements

A variety of measurement fixtures are available for various applications. *Measurement frequency range is the recommended measurement range with consideration of an error.

■ General-purpose components -------

Test leads provide 4-terminal measurements. Accurate measurement is possible to low impedance. Kelvin clip leads enable one clip to be used for two electrically insulated opposing electrodes.

4 terminal alligator clip test leads: 2324

Kelvin clip test leads 2325AL, 2325AM

Kelvin clip test leads: ZM2392

• Measurement frequency: ≦ 100 kHz • M

Measurement frequency:

≤ 20 kHz

2-lead terminal connection with a lead shield suitable for high-impedance measurements.

3-terminal alligator clip test leads: ZM2391

Measurement frequency: ≤ 20 kHz

■ Chip components -----

Measurement frequency:
 ≤ 100 kHz

Test fixture for measuring surface-mounted components with a 2-terminal connection. Since a cable is not used, stray capacitance and residual impedance are small, enabling accurate open and short correction.

Chip test fixture ZM2394

- Measurement frequency: ≤ 2 MHz
- Supported component size:
 0603 (0.3mm thick) to 14 mm (square)

Chip test fixture ZM2394H

- Measurement frequency: ≤ 30 MHz
- Supported component size:
 0603 (0.3mm thick) to 14 mm (square)

Chip test fixture ZM2393

- ullet Measurement frequency: \leqq 1.2 MHz
- Supported component size: 1608 to 5750

■ Lead components -----

Test fixture that makes 4-terminal measurements as easy as inserting the leads into the sample.

To match the size of the components, the spacing of the measurement terminals can be adjusted.

Test fixture ZM2363

Measurement frequency:
 ≤ 10 MHz

Adapter

DC bias voltage adapter

Adapter for applying a DC bias voltage of ±40 V to the sample. This adapter provides easy connection to the LCR meter and test fixture. (4-terminal pair configuration)

ZM2329 (For ZM2376)

ZM2328 (For ZM2371 and ZM2372)

Chip component test lead in a 3-terminal configuration with shielded measurement contacts. Stray capacitance is small, enabling easy measurement of small-capacity capacitors.

Chip component test leads ZM2366

- ullet Measurement frequency: \leqq 10 MHz
- Tip spacing: 1 to 8 mm (typ.)

Chip component test leads 2326A

- Measurement frequency:
 ≤ 1.2 MHz
- Tip spacing: 1 to 8 mm (typ.)

Ordering information

	Product Name	Model name	Overview	Accessories	
	LCR Meter	ZM2371	1 mHz to 100 kHz	Instruction manual, CD (application software,	
Main unit LCR Meter LCR meter	ZM2372	: THILE TO TOO KITE	LabVIEW driver), power cord set (3-pole, 2 m)		
	ZM2376	1 mHz to 5.5 MHz	Instruction manual, CD (application software, IVI drivers), power cord set (3-pole, 2 m)		
Option	LAN interface	PA-001-2131	For ZM2376 (optional order)	<u> </u>	

*Note: The contents of this catalog are current as of July 4, 2019

- Products appearance and specificaitons are subject to change without notice.
- Before purchase contact us to confirm the latest specifications, price and delivery date.

COSINUS Messtechnik - Ihr Partner für Messlösungen in allen elektrischen und physikalischen Anwendungen

COSINUS Messtechnik GmbH

Rotwandweg 4 82024 Taufkirchen

Tel.: 089 / 66 55 94 - 0

Fax: 089 / 66 55 94 -30

office@cosinus.de www.cosinus.de