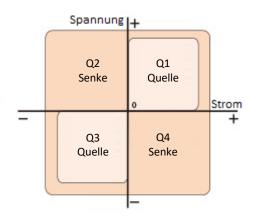
COSINEWS



NF: HSA 42011 - Neuer bipolarer High-Speed Verstärker

Um elektronische Geräte und Komponenten mit kapazitiven oder induktiven Eigenschaften zu prüfen und zu treiben, benötigt es spezielle Verstärker.

Dieses ist in vielen Bereichen wichtig, vorwiegend werden solche Verstärker in der Forschung eingesetzt.

4Q-Betrieb als Quelle und Senke

Frequenzbereich	DC – 1MHz
Ausgangsspannung	150 Vp-p
Ausgangsstrom	3 Ар-р
Flankensteilheit	475 V/μs
4Q-Betrieb	Einsatz als Quelle und Senke (4Q)
niedrige Ausgangsimpedanz	[0.19+0.0155 f (1+j)] Ω or less (typ.)
einstellbare Verstärkung	×1, ×10, ×20, ×50
Polarität	0° oder 180°

Umfangreiche technischen Spezifikationen sind dem Datenblatt zu entnehmen.

Kapazitäten (MLCC)

Motor (Ultrasonic motor)

Magnetische Materialien (Powder core, ferrite core)

Piezoelektronik

Störfestigkeit bei z.B. Smartphones

Dielektrophorese (DEP)

Der HSA 42011 ergänzt das Portfolio unserer 4Q-Verstärker, um einen weiteren Verstärker mit höherer Bandbreite.

Je nach Einsatzzweck kann ein anderer unserer 4Q-Verstärker sinnvoller sein. Die wesentlichen Unterschiede können dem folgenden Selectionguide entnommen werden.

Selectionguide:

	HSA4051	HSA4052	HSA4101	HSA42011	BA 4825
Frequency band	DC to 500kHz		DC to 10MHz	DC to 1MHz	DC to 2MHz
Outut voltage	300Vp-p		142Vp-p	150Vp-p	300Vp-p
Output current	2.83Ap-p	5.66Ap-p	2.8Ap-p	ЗАр-р	0.5 Arms
Slew rate	450V/μs		5000V/μs	475V/μs	500V/μs

NF: CA 5351 - Programmierbarer Vorverstärker

Hohe Verstärkung

Große Bandbreite

 $10^3\,\mbox{V/A}$ bis $10^{10}\,\mbox{V/A}$ (8 Bereiche, 10er Schritte)

DC bis 500 kHz (10^6 V/A), DC bis 70 kHz (10^9 V/A)

Anstiegszeit 0.7 μs (10⁶ V/A)

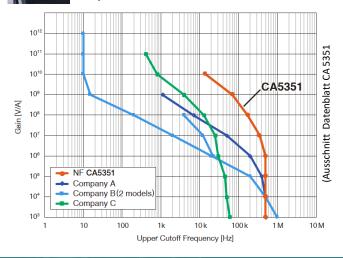
Rauscharm 2.5 fA/ \sqrt{Hz} (10¹⁰ V/A, at 55 Hz)

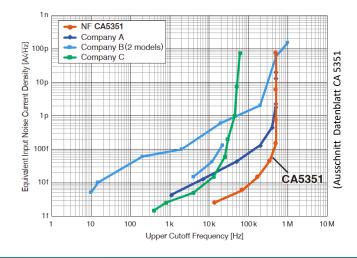
Stromunterdrückung ±8 nA bis ±8 mA (7 Bereich)

Mit hoher Verstärkung, großer Bandbreite, hoher Flankensteilheit und rauscharmer Umsetzung ist der CA5351 ideal für eine Vielzahl kleiner Strommessungen

Bisherige Anwendungsgebiete:

- Strahlenpositionierung f
 ür Synchrotrons und Speicherringe
- Messung der I-V-Eigenschaften für organische Halbleiter (OLED, OFET)
- Gate-Leckstrommessung von FETs und IGBTs
- Detektion des STM-Tunnelstroms (Rastertunnelmikroskop)
- Leitfähige Sondenstromdetektion von AFM (Rasterkraftmikroskop)
- Vorverstärker für Lock-In-Verstärker




Automotive

Lichtverteilungsmessung von PWM-Beleuchtungs-LED-Scheinwerfern: Verstärkung des kleinen Fotostroms von photoleitenden Zellen

Biochemie

Messung von in Elektrolyten suspendierten Partikeln nach der Coulter-Methode Synchrotron Strahlungsanlagen Erkennung von kleinen Stromsignalen, die von der Ionenkammer erzeugt werden

